Sanitaryhygiene.ru

Санитары Гигиены
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сила света и световой поток в светильниках: что это и как вычисляется

Сила света и световой поток в светильниках: что это и как вычисляется

Обилие различных источников света в торговых сетях, различающихся не только ценой, формой и размером цоколя, зачастую вызывает затруднение в выборе подходящей лампочки для бытового использования. Особенно сложно приходится людям старшего возраста, которые слабо ориентируются в технических характеристиках, указанных на упаковке товара, живут привычными, укоренившимися с детства понятиями: энергия, мощность света, лампочка тем ярче светит, чем «больше» в ней ватт. При этом многие даже не знают, в чем измеряется свет.

Сила света и световой поток

Современные источники света, основанные на использовании энергосберегающих технологий, в корне изменяют устоявшееся восприятие соотношения яркости свечения и потребляемой мощности.

Чтобы не испытывать затруднений при выборе лампочки, столкнувшись с их разнообразием на полках магазина, прочтите статью. В доступной форме, стараясь избегать сложных для запоминания физических формул, мы постараемся объяснить, что такое освещение и чем измеряется свет. На какие характеристики незамысловатого бытового прибора – лампочки, следует обращать внимание в первую очередь. И как от правильного выбора будет зависеть комфорт в доме.

Что такое сила света

Для человека, не знакомого с основными физическими величинами, характеризующими распространение фотонов – источников света в окружающей среде, сила света определяется яркостью свечения электрической лампочки. Чем ярче она светит, тем сильнее сила света – широко распространенное мнение.

На самом деле сила света – это не так. Сила света – величина производная. Она рассчитывается по формуле, в которой определяющими являются световой поток (обозначается знаком Ф) и телесный угол (обозначается знаком ω).

Чтобы было понятнее, что сила света не зависит напрямую от мощности лампочки, приведем пример: все знакомы с устройством карманного фонарика или прожектора. В них используются лампы, помещенные в зеркальные конденсоры. Мощность лампочки фонарика обычно небольшая, редко превышающая 35 Вт (галогеновые). Если такую лампочку использовать без конденсора в темном помещении, то сила света, испускаемая ей равномерно во всех направлениях, будет небольшой. В помещении будет сумеречно и некомфортно. Чтобы усилить силу света используют параболический зеркальный конденсор, который направляет световые лучи в нужном направлении, одновременно ограничивая его распространение во все стороны.

Сила света в луче фонарика (прожектора) будет тем больше, чем уже будет телесный угол. Это явление конденсации светового потока на узком участке позволяет экономить электрическую энергию и использовать для получения требуемой освещенности маломощные источники света.

Сила света не указывается на упаковке лампочек, поскольку зависит от устройства осветительного прибора (люстры, плафона, бра). При одинаковой мощности двух лампочек, находящихся в одном помещении, сила света, исходящего от лампы, помещенной в параболический плафон, будет больше, чем у свободно висящей.

Для тех, кто не знает или забыл, напомним, чем измеряется свет. Единицей измерения служит кандела (кд.). В переводе с латинского — свеча. Она соответствует световому потоку в 1 лм (люмен) приходящемуся на освещаемую поверхность в 1 ср. (стерадиан).

световые характеристики

Что такое световой поток светодиодной лампы

Световой поток светодиодных светильников – более близкая восприятию потребителя характеристика. Как раз она напрямую зависит от мощности источника света. По существу, световым потоком называется мощность лучистой энергии, воспринимаемой глазом человека. Обозначают в формулах для расчета (Фе )

Для понимания того, как образуется световой поток светодиодной лампы, необходимо знать ее устройство. Большинство бытовых LED-ламп в качестве источника свет имеют не один, а несколько светодиодов, смонтированных на теплоотводящей плате. В силу физических свойств этого типа полупроводников, они не могут излучать большого количества света. Чтобы добиться требуемого светового потока их объединяют в группы. Световой поток светодиодов суммируется.

Так появляется удобная для покупателей информация на коробках LED-лампочек: соответствует мощности лампы накаливания N Вт.

Измерение светового потока

Существует измеритель светового потока, называемый люксметром. Польза прибора для измерения светового потока неоценима в тех случаях, когда существуют заданные параметры освещенности в помещении. Например, освещенность детской комнаты должна быть 200 лк (люкс), а для спален, гостиных и кухонь комфортной считается освещенность в 150 лк.

Ориентироваться на характеристики, указываемые на упаковке лампочек, можно, допуская большую долю погрешности. Особенно указанием неточных данных светоотдачи грешат китайские производители, склонные завышать характеристики своей продукции.

Большинство смартфонов оснащены встроенными датчиками, автоматически изменяющими яркость свечения экрана, в зависимости от уровня освещенности. Достаточно установить на смартфон программу «Люксметр», чтобы иметь возможность измерить освещенность в помещении.

Читайте так же:
Экономная лампа мигает при выключенном выключателе

Единица измерения светового потока

Мощность светового потока измеряется в люменах (лм). 1 лм равен потоку света, излучаемому в пределах телесного угла, точечным источником с силой в 1 кд. (кандела).

Определяющие формулы

Многообразие величин, характеризующих источники света, невозможно уяснить, не вникнув в суть того, как одни физические характеристики переходят в другие, и какие зависимости существуют между ними. Для этого используют несколько определяющих формул:

  • Световой поток:

  • Сила света:

  • Освещенность общая:

  • Освещенность в конкретной точке поверхности, не перпендикулярной источнику света:

  • Освещенность горизонтальной поверхности:

  • Освещенность вертикальной поверхности:

  • Светимость (для определения количества света, излучаемого плафонами люстр):

Редкий потребитель будет досконально вникать в эти формулы, рассчитывая величины, перед тем, как купить лампочку.

Цветовая температура светового потока

Комфортность нахождения в помещении определяется не только уровнем его освещенности, но и оттенком света, который излучают источники света. Эта характеристика лампочек называется цветовой температурой.

Человеческий глаз более адаптирован к восприятию длинноволнового светового излучения, в котором расположены красные и оранжевые цвета. Гораздо хуже он воспринимает коротковолновое излучение, располагающееся в синем и фиолетовом участках спектра. Свет с голубоватым оттенком воспринимается глазом как резкий, надоедливый. Вызывает быстрое утомление.

Учитывая эти особенности, производители маркируют все источники света понятными потребителю наименованиями:

  • теплый;
  • дневной;
  • холодный.

По существу, речь идет о коммерческом обозначении температуры цветового потока. Чем цветовая температура ниже – тем более «теплый», приятный для зрения свет излучает лампочка.

Наглядно представлено восприятие человеком одного и того же интерьера (пейзажа) при различной цветовой температуре на рисунке:

РИСУНОК 1

Различие восприятия картинки в зависимости от цветовой температуры

Сила света

Отличие освещенности от светового потока

Предельно просто объяснить разницу между этими понятиями можно сравнив их с простыми физическими величинами: давлением и силой. Используя небольшой по площади предмет (иголку) можно приложив минимум силы создать большое давление. Точно так же обстоит и со световым потоком. Используя лампочку, обеспечивающую невысокую освещенность, но сконцентрировав световой поток на ограниченном участке, можно добиться локальной освещенности в десятки раз превосходящей общую.

Следует помнить, что освещенность и световой поток измеряются различными единицами:

  • освещенность – люксами (лк);
  • световой поток – люменами (лм).

Типовое значение светового потока для различных источников света

Типовые значения светового потока для источников света зависят от их конструкции. Наглядно представить, насколько формируемый ими световой поток может отличаться, позволяет таблица:

ТАБЛИЦА 1

Световой поток ламп накаливания, формируемый различными источниками света

ТАБЛИЦА 2

Таблица светового потока люминесцентных ламп

Сравнение света разных источников

Чаще всего сравнению подлежать источники света, используемые в быту:

  • лампы накаливания;
  • галогеновые лампы;
  • люминесцентные лампы;
  • светодиодные (LED) лампы.

Максимально допустимая в быту лампа накаливания обычно не превышает мощности 200 Вт. Более мощные лампы сильно нагреваются и являются пожароопасными. Следует учитывать, что световая отдача различных видов ламп не характеризуется одной лишь мощностью.

Световой поток лампы накаливания мощностью 100 Вт достаточен для создания комфортного освещения в помещении площадью 9-12 м 2 .

Такой же световой поток люминесцентных ламп обеспечивается при мощности 40 Вт.

Светодиодный источник света – самый экономичный в плане энергопотребления. Блок светодиодов мощностью 7 Вт по светоотдаче заменяет стоватовую лампочку.

световой поток

Освещение рабочей поверхности

К освещению рабочих поверхностей применяются требования, содержащиеся в:

  • СНиП 23-05-95;
  • СанПин 2.2.1/2.1.1.1278-03

Рабочий стол должен иметь освещенность 300 лк, рабочее место для производства точных работ – 500 лк, для освещения рабочих поверхностей на кухне достаточно 150 лк.

Другие световые характеристики

Частично характеристики света были рассмотрены в предыдущих разделах. Для лучшего запоминания повторимся.

Что такое кандела?

Кандела – единица силы света (кд). Одна из 7 основных единиц системы СИ. Равняется 1 люмену умноженному на 1 ватт в минус первой степени.

лм х Вт -1

Люмены и люксы

Как уже отмечалось, сходные по звучанию единицы используются для характеристики различных понятий:

  • освещенность измеряется люксами (лк);
  • световой поток измеряют люменами (лм).

Люмен и ватт

Люмен, как единица измерения силы светового потока не тождественен ватту – единице измерения мощности. Несмотря на то, что в бытовом плане люди часто отождествляют мощность лампочки, выраженную в ваттах со светоотдачей, делать это не следует. Наглядный пример: равенство светового потока излучаемого лампой накаливания 100 Вт и светодиодной лампой мощностью 7 Вт.

Итоги: как сделать выбор

Выбор электрической лампочки для бытовых нужд не представляет сложности, если покупатель представляет себе, в каком осветительном приборе она будет использоваться, и какой уровень светоотдачи должна обеспечивать. Высокая светоотдача светодиодных ламп позволяют заменить любой из ранее существовавших источников света, значительно экономя при этом на потреблении электроэнергии.

Читайте так же:
Почему при выключении выключателя лампочка моргает

Исключения составляют дизайнерские «лампы Эдисона», которые невозможно имитировать с использованием светодиодов, хотя, некоторые попытки к этому предпринимаются. Тонкую вольфрамовую нить заменяют филаментными светящимися стержнями.

Яркость лампы зависит от силы тока

Нелинейная проводимость

Закон Ома — это простой, но мощный математический инструмент для анализа электрических цепей. Однако этот инструмент имеет некоторые ограничения, которые вам просто необходимо усвоить в целях правильного его применения к реальным электрическим схемам. Для большинства проводников сопротивление имеет довольно стабильное значение, которое практически не зависит от напряжения и силы тока. По этой причине мы рассматриваем сопротивление многих компонентов цепи как постоянную величину, а непосредственное влияние друг на друга оказывают только сила тока и напряжение.

Проверить данное утверждение можно вернувшись к схеме позапрошлого урока. Имея в этой схеме лампочку сопротивлением 3 Ома, мы рассчитывали силу тока путем деления напряжения на сопротивление (I=U/R). При использовании батареи напряжением 18 вольт, сила тока у нас равнялась 6 амперам. Удвоение напряжения батареи до 36 вольт, приводило к соответствующему удвоению силы тока до 12 ампер. Все это имеет смысл до тех пор, пока лампочка обеспечивает стабильное сопротивление (3 Ома) электрическому току.

ohm42

В реальности все не так просто. Позже мы с вами рассмотрим такое явление, как изменение сопротивления проводника в зависимости от температуры. В лампе накаливания (нить которой раскаляется добела под воздействием электрического тока) сопротивление нити резко возрастает при разогреве ее от комнатной температуры до рабочей. Если в реальной схеме с лампой увеличить напряжение батареи, то увеличится и сила тока, которая приведет к повышению температуры нити лампочки. Повышение температуры, в свою очередь, приведет к увеличению сопротивления нити, предотвращая тем самым дальнейшее увеличение силы тока без увеличения напряжения. Следовательно, напряжение и сила тока в этом случае не следуют правилам закона Ома (I=U/R при R равном 3 Ома), потому что сопротивление нити накаливания лампочки имеет разные значения для разных величин силы тока.

Явление изменения сопротивления при изменении температуры применимо практически ко всем металлам, из которых делаются провода. Однако в большинстве случаев эти изменения настолько малы, что ими можно пренебречь. Что касается нити накала лампочки, то здесь изменение сопротивления происходит в значительных пределах.

Это только один, но далеко не единственный пример "нелинейности" в электрических цепях. "Линейная" функция в математике, при отображении ее на графике, представляет собой прямую линию. Если мы предположим, что сопротивление нити накала лампочки в нашей цепи всегда постоянно и равно 3 Ома, то график этой цепи будет выглядеть следующим образом :

ohm444

Прямолинейность графика говорит о том, что сопротивление имеет постоянную величину в широком диапазоне значений силы тока и напряжения нашей цепи. Но так дело обстоит только в "идеальной" ситуации. Очень похоже на эту ситуацию ведут себя резисторы, которые производятся специально для обеспечения стабильных значений сопротивления. Математик назвал бы поведение резисторов "линейным".

Если мы проведем анализ реальной цепи содержащей батарею и лампочку, то для нескольких разных значений напряжения график будет иметь следующий вид:

ohm46

Этот график уже не является линейным. Он резко возрастает слева, при увеличении напряжения от нуля до небольших значений, и становится положе справа, где цепь требует все большего и большего увеличения напряжения, для обеспечения равнозначного увеличения силы тока.

Если мы попытаемся применить Закон Ома к этой цепи, чтобы вычислить сопротивление лампочки, то для разных значений силы тока и напряжения, мы получим разные значения сопротивления. Можно сказать, что сопротивление здесь нелинейно, оно возрастает с увеличением напряжения и силы тока. Эта нелинейность обусловлена воздействием высокой температуры на нить накаливания лампочки.

Другим примером нелинейной проводимости служат газы, например воздух. При нормальных температуре и давлении воздух является эффективным изолятором. Однако, если мы значительно увеличим напряжение между двумя проводниками разделенными воздушным зазором, то это высокое напряжение "выбьет" электроны со своих орбит, и молекулы воздуха в зазоре станут "ионизированными". Ионизированный воздух (как и другие газы) является хорошим проводником электричества, он создает поток электронов, который отсутствовал до ионизации. Если мы отразим зависимость силы тока от напряжения на графике, то эффект ионизации примет на нем четко выраженное нелинейное значение:

Читайте так же:
Настольная лампа это источник электрического тока

ohm47

Это приблизительный график для небольшого воздушного зазора (около 2 сантиметров). Больший воздушный зазор создаст более высокий потенциал ионизации, но форма графика будет примерно такой же. Здесь мы видим, что пока не достигнут потенциал ионизации, сила тока равна нулю (нет потока электронов и нет проводимости). Как только потенциал ионизации достигнут, проводимость резко возрастает.

Кстати говоря, ионизация является причиной возникновения молний. Только в этом случае возникает не непрерывный поток электронов, а его мгновенные скачки. Напряжение между облаками и землей возрастает до тех пор, пока оно не преодолеет потенциал ионизации воздушного зазора. После преодоления этого потенциала, воздух ионизируется и начинает проводить поток электронов до тех пор, пока не иссякнет электростатический заряд между облаками и землей. Как только заряд истощается, напряжение падает ниже порога а воздух деионизируется и возвращается в свое исходное состояние, обеспечивая высокое сопротивление.

Аналогичными свойствами сопротивления обладают многие твердые изоляционные материалы: они оказывают очень высокое сопротивление электрическому току, если приложенное к ним напряжение ниже некоторого критического порога, и значительно более низкое сопротивление, если этот порог превышен. Такой критический порог напряжения иначе называется напряжением пробоя. После воздействия этого напряжения на твердый изоляционный материал, он, в отличие от газов, не возвращается в прежнее диэлектрическое состояние. Примером воздействия напряжения пробоя может послужить выход из строя высоковольтных проводов в результате повреждения их изоляции.

В целях создания нелинейного сопротивления в электрических цепях, был разработан специальный компонент, названный варистором. Варисторы изготавливаются из составов, содержащих оксид цинка или карбид кремния. Эти устройства обеспечивают высокое сопротивление между своими контактами до достижения напряжением величины "пробоя". После "пробоя" сопротивление варистора резко уменьшается. В отличие от диэлектриков, пробой варистора обратим: он способен выдерживать повторяющиеся пробои без выхода из строя. Ниже представлена фотография варистора:

ohm48

Существуют также аналогичные варистору газонаполненные трубки, которые для своей работы используют принцип ионизации воздуха.

Другие электронные компоненты показывают еще более странную кривую графика зависимости силы тока от напряжения. Некоторые устройства уменьшают силу тока при увеличении приложенного напряжения. Поскольку наклон кривой графика для этого явления отрицателен (она идет вниз при увеличении напряжения), оно известно как отрицательное сопротивление.

ohm49

Отрицательное сопротивление, в определенных диапазонах напряжения, создают вакуумные электронные лампы, такие как тетроды, и полупроводниковые туннельные диоды.

Закон Ома не очень полезен для анализа поведения электронных компонентов, сопротивление которых меняется в зависимости от напряжения и силы тока. Некоторые ученые даже предложили убрать у "Закон Ома" статус закона, потому что он не является универсальным инструментом анализа электрических цепей. Возможно, правильнее было бы назвать уравнение I=U/R определением сопротивления, которое применимо к определенному классу материалов в узком диапазоне условий.

Для удобства усвоения последующих материалов, мы будем считать что сопротивления, указанные в схемах, имеют стабильные значения в широком диапазоне условий, если не указано иное. В этой статье мы просто показали вам сложность реального мира, чтобы у вас не сложилось ложное представление о том, что все электрические явления могут быть описаны несколькими простыми уравнениями.

Яркость лампы зависит от силы тока

Свет при грамотном его использовании позволяет решать самые разнообразные задачи в области дизайна интерьеров. Для создания качественной системы освещения дома или офиса нужно понимать свойства света, знать каким он бывает и каких эффектов позволяет добиться при том или ином способе его использования. О типах света и вариантах его размещения в помещениях различного назначения пойдет речь в нашей статье.

Основные характеристики ламп освещения

Тип цоколя

Цоколь – конструктивный элемент, обеспечивающий питание лампы, а также отвечающий за безопасную установку и извлечение лампы из патрона при необходимости. Существует множество типов и подтипов цоколей для источников света различного назначения.

В осветительных приборах чаще всего встречаются цоколи с маркировкой Е14 и Е27 – они имеют резьбовой тип присоединения (цифра в маркировке указывает на диаметр резьбы в мм).

Цоколь E27

Вторые по популярности – штырьковые цоколи, маркируемые литерой «G». Ими комплектуются лампы для светодиодных и люминесцентных светильников, а также различного рода подсветки в бытовой и другой технике.

Цоколь G9

Тип цоколя определяется конструкцией патрона осветительного прибора. Чтобы узнать, подходит ли та или иная лампочка к определённой модели светильника, нужно сравнить маркировки на упаковках изделий.

Мощность

Показатель, актуальный преимущественно для ламп накаливания, именно по нему ориентируются, когда подбирают источник света определённой яркости.

Читайте так же:
Провод для ламп подсветки

Мощность лампочек

Мощность измеряется в Ваттах и указывает на общее количество потребляемой источником света электроэнергии. Для домашнего использования обычно выбираются лампочки, имеющие мощность в 60-100 Ватт.

Световой поток

Световым потоком называют мощность пучка света, излучаемого тем или иным источником. Этот параметр – не то же самое, что мощность самой лампочки. Мощность лампы представляет собой количество энергии, затрачиваемое не только на излучение света, но и нагрев его источника. Световой же поток характеризует мощность самого светового луча.

Световой поток

Обычная лампа накаливания только половину потребляемой энергии тратит на создание светового луча, остальное уходит в тепло. Светодиодная лампа в этом отношении в разы эффективней, поскольку практически не греется. Это значит, что свет от двух ламп разного типа, но одной мощности будет значительно отличаться: светодиодная будет светить ярко, лампа накаливания – значительно более тускло.

Измеряется показатель в люменах. Номинальное значение мощности светового потока указывается на упаковке лампочки.

Цветовая температура

Этот параметр описывает степень естественности излучаемого лампой света. Цветовую температуру измеряют в Кельвинах.

Цветовая температура

Все оттенки искусственного освещения в зависимости от принадлежности к той или иной части спектра условно делятся на три группы:

  • Тёплые оттенки попадают в диапазон 2700-4000К;
  • Нейтральные 4000-5000 К;
  • Холодные 5000К и выше.

Цвет света хорошо различим человеческим глазом и способен оказывать различное влияние на психику и работоспособность. Тёплые и нейтральные оттенки успокаивают, расслабляют, создают атмосферу для комфортного отдыха. Холодные – возбуждают нервную систему, способствуют повышению концентрации, однако повышают утомляемость и могут стать серьёзными раздражителями.

Температура освещения

Традиционные лампы накаливания и галогенные лампы способны излучать свечение только тёплой части спектра. Светодиодные и люминесцентные источники света в зависимости от состава люминофора, который отвечает за излучение, могут светиться и тёплым, и нейтральным, и холодным светом. Узнать цветовую температуру конкретной лампочки поможет информация на её упаковке.

Угол рассеивания света

Рассеивающая способность ламп определяется площадью распространения (рассеивания) света от источника в окружающем пространстве. Одни светильники дают узкий пучок света, «бьющий» в одну точку, другие без проблем освещают всю комнату целиком. Эту характеристику источника света и называют углом рассеивания.

Угол рассеивания

Самый большой угол имеют лампы накаливания – их свет не имеет определённого направления и рассеивается в пространстве равномерно во все стороны.

Люминесцентные, галогенные и светодиодные источники света создают направленное свечение, угол рассеивания их лучей можно узнать, ознакомившись с информацией на упаковке. Он может варьироваться в пределах 15-180°. Чем больше угол, тем большую площадь способен осветить источник света.

Индекс цветопередачи

По этому параметру можно судить, насколько цвет предмета, освещённого источником искусственного света, соответствует реальному. Сокращённо индекс обозначают аббревиатурой «RA» или «CRI».

Цветопередача

Каждый тип ламп имеет свою характеристику цветопередачи:

  • Лампы накаливании и галогенные лампы освещают предметы светом, спектрально близким к солнечному, поэтому их цветопередача составляет практически 100 Ra. Это значит, что такие источники света не искажают реальные цвета и оттенки предметов.
  • Цветопередача люминесцентных ламп сильно зависит от состава люминофора, которым покрываются их колбы. Она может варьироваться в диапазоне 60-90 Ra. Эти лампы излучают свет, соответствующий «холодной» части спектра, поэтому придают окружающим предметам синеватый оттенок.
  • Индекс CRI светодиодных ламп попадает в диапазон 80-90 Ra. Лампы этого типа могут создавать излучение из любой части спектра. оттенки света близкие к теплым и нейтральным практически не искажают цветовосприятие окружающих предметов.

Напряжение

Обычные лампочки напрямую работают от электрической сети 220 вольт, не требуя использования каких-либо трансформирующих устройств.

В последнее время все большей популярностью пользуются низковольтные источники света, рабочее напряжение для которых составляет 6, 12, 24 или 36 вольт. Такие лампы менее чувствительны к перепадам напряжения в сети, а значит, реже выходят из строя.

Напряжение ламп

Кроме того, они меньше нагреваются, а значит, являются более безопасными, чем традиционные лампы накаливания или «галогенки». Низковольтные лампы имеют лишь один существенный недостаток – их можно подключать в сеть только через трансформатор, понижающий рабочее напряжение до нужных значений.

Подбор лампочек для домашних светильников не будет вызывать особых сложностей, если внимательно разобраться с перечисленными выше характеристиками источников света. Всю необходимую информацию о параметрах света, создаваемого лампами того или иного типа, сегодня легко найти на их упаковках или в интернете.

Сравнение лампочек: светодиодных, люминесцентных и ламп накаливания

В ассортименте большинства магазинов светотехники присутствуют настольные, настенные и потолочные светильники, работающие за счет использования люминесцентных ламп, светодиодов и традиционных ламп накаливания. И если светильник можно выбрать исключительно по дизайну, то с выбором лампы зачастую возникают определенные сложности. Каждый представленный вариант имеет достоинства и недостатки, а потому покупка откладывается до выяснения всех подробностей. Чтобы помочь читателям блога, сегодня мы проведем подробное сравнение лампочек и наглядно покажем, чем отличаются ранее перечисленные типы этих изделий. Сравнение будем производить последовательно, на основании нескольких критериев, чтобы в полной мере раскрыть особенности продукции.

Читайте так же:
Подходит ли выключатель с подсветкой для светодиодных ламп

Основные критерии сравнения лампочек

Сразу скажем, что светодиодные лампочки имеют весомое преимущество перед остальными вариантами. Но это касается не всех параметров. Поэтому сравнение проведем строго по пунктам, чтобы показать читателям объективную картину, обосновав указанную точку зрения непреложными доказательствами.

Изначально мы хотели включить в список галогенные лампы, но отказались от идеи из-за непопулярности этой продукции. Если лампочки накаливания еще используют по старой памяти, то галогенным аналогам уделяют минимум внимания. Что касается непосредственно сравнения, то оно будет проведено по таким критериям:

  • яркость свечения;
  • цветовая температура;
  • морозоустойчивость;
  • энергопотребление;
  • срок эксплуатации;
  • стоимость.

Кратко распишем все эти нюансы, после чего рассчитаем реальную эффективность применения всех видов ламп, а затем подведем итоги сравнения в максимально наглядном и объективном формате.

Сравнение светодиодных, люминесцентных и ламп накаливания

Сравнение лампочек по яркости

Светодиодные лампочки находятся вне конкуренции. Они существенно превосходят аналоги по яркости, создавая минимальную нагрузку на электросеть. При одинаковой мощности световой поток у светодиодной лампочки сильнее, чем у люминесцентной (в 2 раза) и лампы накаливания (в 8-9 раз). Светодиодная лампа 11 Вт обеспечивает примерно такой же уровень освещения, как люминесцентная 23 Вт и накаливания 100 Вт.

Сравнение лампочек по цветовой температуре

Последнее место по диапазону занимают лампы накаливания (имеют фиксированное значение в пределах 2200-3000К в зависимости от мощности). Люминесцентные могут давать свет в широком спектре от 2700 до 7700К, светодиодные светильники поддерживают значения от 1800 до 6500К. Точные диапазоны прописаны в технических характеристиках конкретных моделей ламп.

Сравнение лампочек по морозоустойчивости

Для владельцев квартир этот вопрос не особо актуален, ведь температура внутри помещения редко падает ниже 14-16°C (такое случается преимущественно в давно построенных домах перед началом отопительного сезона в самых холодных регионах страны). Однако при использовании ламп в неотапливаемых складских или производственных помещениях морозоустойчивость изделий приобретает значение. При нулевой или минусовой температуре люминесцентные лампы могут вообще не включиться. Светодиодные лампочки покажут аналогичную эффективность, а вот лампы с телом накала будут работать вполне достойно.

Сравнение лампочек по энергопотреблению

Светодиодная лампа экономичнее люминесцентной, а также потребляет на 70-80% электричества меньше, чем лампа накаливания. Поэтому, если нужно снизить коммунальные платежи, то лучше купить LED лампочку HIPER или аналогичную продукцию другого бренда.

Сравнение лампочек по энергопотреблению

Сравнение лампочек по продолжительности эксплуатации

Многое зависит от качества лампочек, исправности светильника и надежности работы электросети. С целью сравнения мы взяли идеальные показатели всех этих параметров, после чего подсчитали продолжительность работы лампочек. Примерная длительность эффективного применения светодиодных ламп составила 25 лет, люминесцентных – 15 лет, накаливания – 1 год (при работе 4-6 часов в день). Отметим, что эти показатели актуальны для дорогостоящих ламп. В случае использования стандартных вариаций лампочек и с учетом не самых стабильных условий их эксплуатации все приведенные числа можно смело уменьшать в 1.5-2 раза.

Сравнение лампочек по стоимости приобретения

Если говорить о реально качественной продукции, то самый дорогой вариант – светодиодная лампочка. На втором месте – люминесцентная лампа. На третьем, соответственно, лампа с телом накала. Но если учесть продолжительность службы изделий, то ситуация покажется не такой однозначной. Купить люстру или светильник со встроенными светодиодами или возможностью установки соответствующей лампы намного выгоднее, чем использовать альтернативные варианты.

Результаты сравнения лампочек

Если обобщить приведенные примеры, то выгода покупки LED лампы становится очевидной. Она служит дольше аналогов, потребляет меньше электроэнергии, демонстрирует отличные показатели яркости. А если выделить чуть больше денег и купить умную лампу HIPER LED, то дополнительно появится возможность регулировки яркости, насыщенности и цветовой температуры в дистанционном режиме. Покупку остальных типов ламп можно считать пустой тратой денег. Они менее экономны, долговечны и производительны, чем LED аналоги.

Ниже представим видео с демонстрацией реагирования ламп разного типа на изменение напряжения в сети (при прямом подключении и с использованием стабилизатора).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector