Sanitaryhygiene.ru

Санитары Гигиены
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Распределение нагрузки по фазам — схема, правила, видео

Распределение нагрузки по фазам — схема, правила, видео

Вам необходимо сделать трехфазное питание для дома? О том, как это сделать, читайте описание ниже.

Прежде всего, нужно провести расчет трехфазной цепи.

Перекос фаз в трехфазной сети

Прямой опасности в этом никакой для вас нет. Есть только постоянно отключающийся трехфазный автоматический выключатель. Почему так происходит?

В трехполюсном автоматическом выключателе, например С 25 есть три однофазных автомата. Каждый из них выдерживает 25 А. То есть на каждую фазу приходится по 5 кВт мощности, отсюда и получается, что подключенная мощность к дому 15 кВт. Все три однофазных автоматических выключателя соединены в один и имеют единый рычаг. Здесь о том как правильно подобрать автоматические выключатели.

Что происходит если распределить нагрузку по фазам в частном доме в случайном порядке? Рассмотрим на примере: на фазе «А» подключен весь свет, на фазу «В» подключен весь второй этаж розетки, а на фазу «С» первый этаж.

На втором этаже три спальни и мощные потребители отсутствуют. Современные светодиодные светильники также потребляет немного. А вот фаза «С» будет нагружена стиральной машиной, духовкой, микроволновкой, посудомоечной машиной, электрочайником и возможно еще пылесос, фен в ванне и многим чем еще.

Вы включили стиральную машину (1,7 кВт), на кухне включили разогреваться духовку (+2 кВт) и поставили в неё вкусную пиццу. Тем временем нужно немного пропылесосить (+2 кВт) вокруг стола т.к. рассыпался сахар и вскипятить чайник (+2 кВт). Итого 7,7 кВт, что вполне хватит «перекосить» трехфазный автоматический выключатель на 25 ампер.

Из-за общего рычага воздействия перегруженная фаза выбьет весь автомат. В итоге вместо возможности использования 15 кВт у вас останется только 5 кВт. Кстати о том какой счётчик будет вам выгоднее иметь однотарифный и двухтарифный здесь.

Как рассчитать нагрузку?

Для того чтобы правильно распределить нагрузку по фазам в загородном доме необходимо составить список особо мощных потребителей и хоть немного представить какие из них одновременно используются.

Для того чтобы было немного проще ориентироваться вот перечень наиболее мощных потребителей на, которые стоит ориентироваться при распределении нагрузки по фазам:

  1. Варочная поверхность 7 кВт;
  2. Духовой шкаф или духовка потребляет 2,5 кВт мощности;
  3. Стиральная машина — 1,7 кВт;
  4. Посудомоечная машина — 1,7 кВт;
  5. Электрический чайник — 2 кВт;
  6. Микроволновая печь — 1 кВт;
  7. Пылесос — 2 кВт;
  8. Утюг — 2 кВт;
  9. Бойлер накопительный — 2 кВт;
  10. Сплит-система — 1 кВт.

Порядок расчета

1. Симметрично распределить нагрузку на три фазы. Мощность на каждой фазе будет равна мощности трехфазной нагрузки, кратная трем
2. Рассчитать нагрузку на каждую фазу
3. В результате, нужно добиться того, чтобы на каждой фазе, в момент полной загрузки сети, была примерно одинаковая мощность
4. Определить ток на самой загруженной фазе. После этого необходимо проверить, чтобы при максимальной мощности ток был меньше тока срабатывания входного трехфазного автомата

Разделение электропроводки на группы

Из-за использования в жилье большого количества таких электроприборов как стиральных машин, кондиционеров, бойлеров, различной аудио и видео техники возросла нагрузка на современную электропроводку. Кухонное помещение занимает первое место в доме по сосредоточению бытовых приборов – электроплита, холодильник, микроволновка, посудомойка, пароварка, электрический чайник и множество дополнительной техники, которая потребляет большое количество электроэнергии.

Например, трехфазный ввод (380 В) и чтобы избежать на нем перегрузки, все фазы должны быть равномерно распределены. В противном случае напряжение на фазных проводах будут различаться между собой в большую или меньшую сторону. В случае, когда имеется однофазное питание равное 220 В при перепадах напряжения в пределах от 150 до 280 В может привести к поломке электроприборов.

Также при такой работе происходит увеличение потребления электроэнергии у техники, которая не защищена от перепадов напряжения в сети. Поэтому очень важно грамотно распределить нагрузки по фазам.

Распределение нагрузки в щетке 380 вольт в загородном доме

Для распределения нагрузки и обеспечения защиты и безопасности при эксплуатации электропроводка делится на группы. Такой способ позволит раздельно управлять подачей тока отдельных приборов или совокупностью электро потребителей. Этот метод удобен при проведении ремонтных работ, так как можно отключать нужную группу электропитания. При различных аварийных ситуациях – затопили соседи, был неудачно забит гвоздь в стену, который повредил проводку. Отключив аварийный блок, можно продолжать пользоваться остальными линиями.

Рекомендации по разделению:

Распределение по фазам при 380 вольтовом распределения автомата тов

  • Крупные бытовые приборы, которые выступаю в роли мощных энергопотребителей, устанавливаются отдельно с монтажом защитного автомата в распределительном боксе. Такой техникой является электрическая плита, электрическая духовка, электрочайник, водонагревающее устройство, кондиционер, стиральная машина.
  • Группа розеток, каждое помещение гостиную, спальню, детскую, кабинет рекомендуется изготовить индивидуальными блоками.
  • Кухня является очень загруженной частью любого жилья, где розетки также следует сделать раздельно.
  • Система освещения делается индивидуальным блоком, по возможности лучше сделать и освещение каждой комнаты по отдельности.
  • Санитарный узел, который входит в пункт самых опасных помещений по системе электробезопасности, где имеется повышенная влажность, также должен быть выполнен отдельной группой.

Перед тем как начать разделение электропроводки на группы, следует составить план помещения с нанесенными местами расположения розеток и мощных бытовых приборов, светильников, выключателей. Зная заранее, какие места подключения электротехники будут задействованы, можно избежать в дальнейшем переделки проводки.

Схема разграничение фаз в щетке 380 вольт в квартире

Совокупность розеток и осветительных приборов рассчитывается из электрической нагрузки для этого ряда. В случае, когда мощность всех подключаемых агрегатов превышает норму допустимую для этой системы, блок разделяется на два или при надобности большее количество линий.

Схема подключения автоматов при вводном напряжении 220 в

В комнатах с повышенным уровнем влажности устанавливается дифференциальная защита на утечку тока 10 мА. Наиболее подходящие приборы для установки – автоматический выключатель в комплексе с УЗО или комплексный защитный аппарат, выполняющий защитные функции двух аппаратов. Позволит защитить питаемую цепь от перегрузок, токов короткого замыкания такие сочетания кабелей с автоматами:

  1. Для прочих линий монтируется дифференциальная защитная система на ток утечки 30 мА.
  2. Освещение выполняется кабелем с сечением 3х1.5 мм2, защита автоматом 10 А.
  3. Розетки лучше выполнить кабелем 3х2.5 мм2 и защитой автоматического выключателя 16 ампер.
  4. Потребители с мощностью более 3.5 кВт – электродуховки, электроплиты должны подключаться напрямую к электрокабелю с установкой автоматического выключателя нужного номинала.
Читайте так же:
Описание работы проходного выключателя

Калькулятором онлайн, произвести расчет сечения провода.

Схема распределения нагрузки в квартире с подводом 220 вольт в квартире

Выбирать автоматы защиты и сечение, питающие провода следует по более загруженной фазе. Неравномерное распределение загрузки фаз и неучтенные асимметрии в распределении нагрузки тока, приводит к серьезным погрешностям при выборе сечений проводов, что приводит к перегрузке электрической системы – перегрев, поломка, риск воспламенения. При покупке электрокабеля, рекомендуется выбирать провода с показателями пожарной безопасности.

Подробно, о монтаже щитка квартиры.

Разводка однофазного щитка

Например, к щиту подключаются — плита (варочная панель) 7,2 кВт; духовой шкаф 4,3 кВт; кухня 5,5 кВт; комната 3,5 кВт; ванная 3,5 кВт; двигатель 3-фазный 1,5 кВт; розетка 3-фазная.

Рассмотрим такую ситуацию: у вас была однофазная сеть и теперь дали разрешение на проведение трехфазной. В этом случае нужно все потребители распределить по фазам.

Самый мощный прибор это варочная панель (плита) 7,2 кВт, которую нужно посадить на первую фазу. На вторую подключить духовой шкаф и комнату. В итоге получается 7,8 кВт. А на третью фазу подключить кухню и ванную комнату. Общая мощность получится 9 кВт. Прибавим еще мощность двигателя, разделив ее на каждую фазу одинаково. В итоге получилось: на первой фазе 7,8 кВт; на второй фазе 9,4 кВт; на третьей — 9,6 кВт. Приблизительно распределили нагрузку по фазам по возможности равномерно. Посмотрим, какой в результате получился щиток.

  • Итак, трехфазный щиток состоит из входного автомата и трехфазного счетчика. Далее, на первую фазу подключен автомат 40 Ампер, через который питается плита мощностью 7,2 кВт. Если просуммировать с двигателем, будет 7,8 кВт.
  • Ко второй фазе через автомат 25 Ампер подключен духовой шкаф и микроволновая печь. Через второй автомат 16 Ампер подсоединена комната проектной мощностью 3,5 кВт. Общая мощность получилась 8,4 кВт.
  • К третьей фазе подключен ДИФ автомат и обычный автомат. Через обычный автомат на 25 Ампер подключена кухня проектной мощностью 5,5 кВт. Через ДИФ автомат подключена ванная комната проектной мощностью 3,5 кВт. Общая мощность на третью фазу получается 9,6 кВт.

Распределение полной мощности двигателя на три фазы по 0,6 кВт:

  • первая фаза: 7,2+0,6=7,8 кВт;
  • вторая фаза: 4,3+3,5+0,6=8,4 кВт;
  • третья фаза: 5,5+3,5+0,6=9,6 кВт.

По всем трем фазам максимальная мощность составляет 9,6 кВт. Если проектная мощность 8,8 кВт и входной автомат на 40 Ампер, а у нас проектная мощность на одной из трех фаз 9,6 кВт, то такой автомат не выдержит нагрузку. Если третью фазу загрузить на полную мощность, то этот автомат отключится. Поэтому, входной автомат нужно ставить на 50 Ампер.

Из этого примера видно, что при небольшом количестве потребителей можно полноценно загрузить трехфазную цепь. Иногда возникает необходимость подключить кондиционеры, электрический теплый пол и другие потребители высокой мощности.

Прежде чем покупать электрическое оборудование, надо рассчитать потребляемую мощность. Потянет ли входной автомат и разрешенный лимит по току на электроснабжение дома?

После подсчета всех нагрузок по фазам можно определить, какой мощности нужен входной автомат. Узнать в энергосбыте, какой резерв по току вам дадут. Возможно, разрешение дадут только на 25 Ампер. Придется покупать приборы из расчета на эти 25 Ампер. На фазу дается только 5,5 кВт.

В этом случае, что делать с электроплитой на 7,2 кВт? Современные электроплиты и варочные панели имеют подключение к двухфазной цепи, а иногда и к трехфазной. Кроме земляного и нулевого вывода имеется L1 и L2 (иногда L1, L2, L3). В первом случае для подключения двухфазной цепи, а во втором – подключение трехфазной цепи. Такие мощные нагрузки предусмотрены специально, чтобы можно было их распределить.

Когда делаете проект и запрашиваете проектную мощность, пытайтесь получить разрешение на мощность с запасом.

Пишите , дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Ставим УЗО в квартире: как подобрать прибор по мощности?

Ставим УЗО в квартире: как подобрать прибор по мощности?

Из этой статьи вы узнаете, как рассчитать мощность УЗО и установить его дома или в офисе.

Тонкости выбора УЗО

Ежегодно количество бытовой техники и электроники в каждой квартире растет, что повышает риск утечки токов, и как следствие может привести к пожару в помещении или поражению током человека. Чтобы этого избежать, в квартирах и офисных помещениях устанавливаются УЗО. Как рассчитать мощность прибора и выбрать УЗО для квартиры? На какой схеме подключения остановиться? Мы объясним, как это сделать, даже если вы никогда не были связаны с электрикой.

Принцип работы УЗО

Автор: boom1x 15:16, 21 января 2008 (UTC) - Переделанная из Узо.png версия изображения, CC BY-SA 3.0, https://ru.wikipedia.org/w/index.php?curid=973285

УЗО или устройство защитного отключения — это прибор, необходимый для размыкания электрической цепи в случае утечки дифференциального тока. При нормальной работе электросети и электрооборудования разница потенциалов в кабелях нулевая. Однако при пробое в изоляции или другом нарушении в работе электрической цепи происходит утечка дифференциального тока, который подается на корпус устройства. А прикасаясь к корпусу, человек сам становится проводником (через его тело проходит дифференциальный ток), рискуя получить электротравму.

УЗО контролирует разницу в потенциалах и при ее образовании мгновенно разрывает цепь, отключая электричество во всей квартире или только на определенном участке. Стоит отметить, что устройство защитного отключения не защищает проводку и бытовую технику от перепадов напряжения и короткого замыкания в сети — этим занимаются автоматические выключатели. Поэтому УЗО стоит монтировать в совокупности с автоматическими выключателями, соединяя их последовательно.

Расчет мощности для УЗО

Каждый отдельный прибор имеет свою пороговую токовую нагрузку, при котором он будет нормально работать и не перегорит. Естественно она должна быть выше, чем совокупная токовая нагрузка всех приборов, подключенных к УЗО. Существует три типа схем подключения УЗО, для каждой из которых расчет мощности прибора свой:

  • Простая одноуровневая схема с одним прибором защиты.
  • Одноуровневая схема с несколькими приборами защиты.
  • Двухуровневая схема защиты отключения.
Читайте так же:
Abb вводной автоматический выключатель

Рассчитываем мощность для простой одноуровневой схемы

Простая одноуровневая схема характеризуется наличием одного УЗО, который устанавливается после счетчика. Его номинальная токовая нагрузка должна быть выше, чем суммарная токовая нагрузка всех потребителей, подключенных к нему. Предположим в квартире установлен бойлер мощностью 1.6 кВт, стиральная машина на 2.3 кВт, несколько лампочек суммарно 0.5 кВт и другие электроприборы на 2.5 кВт. Тогда расчет токовой нагрузки будет следующим:

(1600+2300+500+2500)/220 = 31.3 А

Значит для данной квартиры необходимо будет устройство с токовой нагрузкой не ниже 31.3 А. Ближайшее УЗО по мощности на 32 А. Его хватит даже если все бытовые приборы будут включены одновременно.

Одним из таких подходящих приборов является УЗО ЭРА NO-902-126 ВД63, рассчитанный на номинальный ток в 32 А и ток утечки в 30 мА.

Рассчитываем мощность для одноуровневой схемы с несколькими приборами защиты

Такая разветвленная одноуровневая схема предполагает наличие дополнительной шины в устройстве счетчика, от которой отходят провода, формирующиеся в отдельные группы для отдельных УЗО. Благодаря этому можно установить несколько приборов на разные группы потребителей или на разные фазы (при трехфазном подключении сети). Обычно отдельное УЗО устанавливается на стиральную машину, а остальные приборы монтируются для потребителей, которые формируются в группы. Предположим вы решили установить УЗО для стиральной машины мощностью 2.3 кВт, отдельный прибор для бойлера мощностью 1.6 кВт и дополнительное УЗО для остального оборудования суммарной мощностью 3 кВт. Тогда расчеты будут следующими:

  • Для стиральной машины — 2300/220 = 10.5 А
  • Для бойлера — 1600/220 = 7.3 А
  • Для остального оборудования — 3000/220 = 13.6 А

Учитывая расчеты для данной разветвленной одноуровневой схемы потребуется три прибора мощностью 8, 13 и 16 А. В большинстве своем такие схемы подключения применимы для квартир, гаражей, временных построек и т.д.

Кстати, если не хотите особо заморачиваться с монтажом подобной схемы, то обратите внимание на переносные УЗО-адаптеры, которые можно быстро переключать между розетками. Они рассчитаны на один электроприбор.

Ставим УЗО в квартире: как подобрать прибор по мощности?

Рассчитываем мощность для двухуровневой схемы

Принцип расчета мощности устройства защитного отключения в двухуровневой схеме такой же, как и в одноуровневой, с единственной разницей в наличии дополнительного УЗО, расположенного на вводе в квартиру, до счетчика. Его номинальная токовая нагрузка должна соответствовать суммарной токовой нагрузке всех приборов в квартире включая счетчик. Отметим наиболее распространенные показатели УЗО по токовой нагрузке: 4 А, 5 А, 6 А, 8 А, 10 А, 13 А, 16 А, 20 А, 25 А, 32 А, 40 А, 50 А и т.д.

УЗО на вводе защитит квартиру от возникновения пожара, а приборы, установленные на отдельные группы потребителей, защитят человека от поражения электрическим током. Данная схема наиболее удобная в плане ремонта электропроводки, так как позволяет отключать отдельный участок без отключения всего дома. Также, если нужен будет ремонт кабельных систем на предприятии, не придется отключать все офисные помещения, а значит не будет массовых простоев в работе. Единственным минусом являются немалые затраты на установку УЗО (зависит от количества приборов).

Если вам необходимо выбрать УЗО на группу автоматов для однофазной сети, то можем посоветовать модель ЭРА NO-902-129 ВД63 с номинальной токовой нагрузкой в 63 А — этого с головой хватит на все электроприборы в доме.

Таблица мощностей УЗО

Если вы думаете о том, как легко и быстро подобрать УЗО по мощности, таблица, приведенная ниже в этом поможет:

Суммарная мощность нагрузки кВт2.23.55.578.813.817.622
Тип УЗО на 10-300 мА10 А16 А25 А32 А40 А64 А80 А100 А

Подбираем УЗО по дифференциальному току

Каждый агрегат имеет порог срабатывания по значению дифференциального тока. Чтобы точно рассчитать ток утечки, важно знать следующие показатели:

  • Длину кабеля от потребителя до устройства защиты. Ток утечки сети получаем из расчета 10 мкА на 1 м кабеля.
  • Ток утечки электроприборов. В среднем ток утечки оборудования получаем из расчета 0.4 мА на 1 А прибора.
  • Мощность устройств потребителей.

Расчет дифференциального тока производится по следующей формуле:

Iдиф = 0.4*Iприборов + 0.01*Lкабеля

Итак, предположим вам необходим аппарат защиты для стиральной машины мощностью 2.3 кВт, которая подключена проводом длиной 10 м. В этом случае утечка дифференциального тока будет следующей:

Iдиф = 0.4*(2300/220) + 0.01*10 = 4.3 мА

Стоит отметить, что порог срабатывания по току утечки у УЗО должен быть в 3 раза выше, чем расчетный дифференциальный ток. Благодаря этому можно избежать ложных срабатываний. Поэтому для стиральной машины нужен агрегат с порогом срабатывания минимум 12.9 мА. Ближайшим является аппарат с током срабатывания 30 мА. Так для данных нужд подойдет недорогое УЗО IEK 30мА тип AC ВД1-63 GENERICA MDV15-2-025-030.

Стандартными показателями тока утечки для аппаратов защиты являются:

  • Устройства на 6, 10 и 30 мА — для защиты человека от поражения электричеством.
  • Устройства на 100, 300 и 500 мА — для защиты зданий и сооружений от пожаров.

Если вы осуществляете выбор УЗО для частного дома, то в большинстве случаев аппаратов на 30 мА будет достаточно.

Как выбрать агрегат для однофазной и трехфазной сетей?

Здесь все довольно просто — достаточно определить количество полюсов на аппарате. Для однофазных сетей подойдут двухполюсные устройства, а для трехфазных четырехполюсные. Типичным представителем четырехполюсников является УЗО IEK 30мА тип AC ВД1-63 MDV10-4-040-030.

Его с головой хватит для сварочного аппарата трансформаторного или инверторного типа. Кстати, как выбрать сварочный инвертор мы уже писали, так что можете пройтись по данному гиду.

Что такое время срабатывания прибора?

УЗО любого типа имеет время срабатывания, за которое оно отключает питание во всем доме или только на определенной фазе или участке проводки. Время срабатывания стандартных УЗО для защиты от поражения током человека не превышает 30 — 40 мс. А вот селективные модели отключатся лишь через 200 — 500 мс. Последние предназначены для установки на входе в квартиру для защиты от пожара. Рекомендуем устанавливать селективные устройства на входе, а стандартные непосредственно в самой квартире. Благодаря этому свет будет отключаться не во всей квартире, а только на определенном участке проводки.

Читайте так же:
Соединение двух клавишного выключателя

Выбор коммутационных аппаратов и токоведущих частей распределительных устройств — Выбор выключателей

2 ВЫБОР КОММУТАЦИОННЫХ АППАРАТОВ
2.1 Выбор выключателей
Выключатель- это коммутационный аппарат, предназначенный для отключения и включения электрической цепи в различных режимах работы. Выключатели должны надежно отключать токи нормального режима и режима КЗ, а также малые индуктивные и емкостные токи без появления при этом опасных коммутационных перенапряжений.
При проектировании электроустановок первоначально намечают типы выключателей, а затем производят их выбор по следующим параметрам [1,7]:
а) по напряжению электроустановки
, (2.1)
где — номинальное напряжение установки;
— номинальное напряжение выключателя;
б) по длительному току в нормальном и форсированном режимах работы
(2.2)
в) по отключающей способности
При выборе выключателя по отключающей способности сначала производится проверка на симметричный ток отключения по условию:
(2.3)
где — периодическая составляющая тока короткого замыкания, для момента времени
Далее проверяют выключатель на возможность отключения апериодической составляющей тока КЗ по условию:
, или ; (2.4)
где — номинальное допускаемое значение апериодической составляющей в отключающем токе для момента времени
— нормированное значение содержания апериодической составляющей в отключаемом токе, %, которое берется по каталогу для выбранного выключателя. Если отсутствует для данного типа выключателя, то оно может быть определенно по кривой представленной на рисунке 2.1 или рассчитано для момента времени по выражению:
, (2.5)
‑ апериодическая составляющая тока КЗ в момент расхождения контактов выключателя ;
‑ процентное содержание апериодической составляющей в отключаемом токе КЗ, которое определяется по выражению:
(2.6)
Если условие (2.3) выполняется, а (2.4) не выполняется, то допускается проверку выключателя по отключающей способности производить по полному току КЗ:
; (2.7)
или (2.8)

Рисунок 2.1-Нормированное содержание апериодической составляющей в отключаемом токе

Проверка выключателя по включающей способности производится по условию:
(2.9)
где — ударный ток КЗ в месте установки выключателя,
— начальное значение периодической составляющей тока КЗ в месте установки выключателя,
— номинальный ток включения выключателя, равный номинальному току отключения (начальное действующее значение периодической составляющей);
— наибольший пик тока включения.
На электродинамическую стойкость выключатель проверяется по двум условиям:
(2.10)
где — начальное действующее значение периодической составляющей сквозного предельного тока КЗ, равное номинальному току отключения выключателя;
– наибольший пик сквозного предельного тока КЗ.
На термическую стойкость выключатель проверяется по тепловому импульсу тока КЗ в соответствии с выражением (1.12).
Согласно ПУЭ намеченные к установке выключатели должны быть проверены по параметрам переходного восстанавливающегося напряжения (ПВН) на контактах выключателя. ПВН появляется на контактах выключателя после погасания в нем электрической дуги [5,7] .
Для воздушных выключателей рекомендуется выполнить сначала приближенную проверку скорости восстановления напряжения [8]:
, (2.11)
где — расчетный ток трехфазного КЗ;
— количество линий, не считая поврежденной.
Если условие (2.11) не выполняется, необходимо произвести уточненный расчет.
Для уточненной проверки выключателей по параметрам восстанавливающегося напряжения необходимо сопоставить расчетную кривую переходного восстанавливающегося напряжения с нормированной. Расчетная кривая ПВН не должна выходить за пределы нормированной характеристики ПВН выключателя и один лишь раз должна пересекать линию запаздывания. Линия запаздывания параллельна начальной части нормированной характеристики ПВН выключателя и определяется двумя координатами и . Для выключателей напряжением 110 кВ и выше , а координата установлена равной 2, 4 и 8 мкс в зависимости от отключаемого тока, равного соответственно 100, 60 и 30% номинального тока отключения.
Нормированная характеристика переходного восстанавливающегося напряжения для сетей с эффективно заземленной нейтралью, напряжением 110 кВ и выше, задается четырьмя координатами и . Нормированные характеристики ПВН для выключателей напряжением 110 кВ и выше приведены в таблице 2.1.
Таблица 2.1 — Нормированные характеристики ПВН для выключателей напряжением 110 кВ и выше.

Нормированная характеристика ПВН для сетей с незаземленной нейтралью или заземленной через дугогасительные реакторы с номинальным напряжением 6¸35 кВ задается двумя координатами и . Линия запаздывания для данных выключателей определяется координатами и [5]. Нормированные характеристики ПВН для выключателей напряжением до 35 кВ включительно приведены в таблице 2.2.
Таблица 2.2 — Нормированные характеристики ПВН для выключателей напряжением до 35 кВ

Аналитический расчет ПВН для проверки выключателей может быть выполнен приближенно с рядом упрощений [5]. При расчете ПВН не учитываются активные сопротивления элементов расчетной схемы и влияние короны воздушных линий электропередач (ЛЭП); изменение отключаемого тока вблизи его нулевого значения принимается линейным; воздушные ЛЭП, подключенные к системе сборных шин распределительного устройства, представляются активными сопротивлениями, равными эквивалентным волновым сопротивлениям линий [6].
Для одноцепных ЛЭП могут быть приняты следующие средние значения волновых сопротивлений прямой последовательности представленные в таблице 2.3.
Таблица 2.3 — Средние значения волновых сопротивлений прямой последовательности для одноцепных ЛЭП

Комплексная схема замещения

Волновые сопротивления нулевой последовательности для одноцепных ЛЭП принимаются равными , т.е. . Для двух параллельных одноцепных ЛЭП , а для двухцепной ЛЭП на одной опоре .
Расчетными видами КЗ для определения ПВН являются трехфазное и однофазное КЗ на землю. Трехфазное КЗ без соединения с землей является редким исключением [5].
При трехфазном КЗ на землю в наихудших условиях находится первый полюс выключателя, так как он отключает ток трехфазного КЗ. После погасания дуги в первом полюсе выключателя трехфазное
КЗ на землю переходит в двухфазное КЗ на землю, отключаемое вторым полюсом. Третий полюс отключает ток однофазного КЗ.
Трехфазному КЗ на землю соответствует комплексная схема замещения представленная на рисунке 2.2. Входное сопротивление схемы, при , равно:
. (2.12)
Переходное восстанавливающееся напряжение на первом полюсе выключателя при трехфазном КЗ на землю определяется по выражению:
, (2.13)
где — действующее значение тока трехфазного КЗ;
— эквивалентная индуктивность схемы;
— индуктивность прямой последовательности;
— количество линий, не считая поврежденной;
, (2.14)
где — сопротивление прямой последовательности местной электростанции;
— базисное сопротивление;
— индуктивность нулевой последовательности местной электростанции;
— сопротивление нулевой последовательности местной электростанции
Скорость восстановления напряжения на полюсе выключателя без учета емкости схемы определяется по выражению:
. (2.15)

Читайте так же:
Схема проводки под проходные выключатели

Рисунок 2.2 – Комплексная схема замещения
При учете емкости схемы скорость восстановления напряжения на полюсе выключателя определяется по выражению:
, (2.16)
где — входное сопротивление схемы при учете емкости;
— эквивалентная емкость схемы;
— емкость проводников и элементов оборудования схемы;
— действующее значение тока трехфазного КЗ;
— линейное напряжение сети;
— эквивалентная емкость нулевой последовательности схемы;
— дополнительный множитель, определяемый по кривой, , представленной на рисунке 2.3;
.

Рисунок 2.3 – Диаграмма для определения множителя

При однофазном КЗ на землю комплексная схема замещения, в которой сопротивления прямой, обратной и нулевой последовательностей включены последовательно и обтекаются током , представлена на рисунке 2.4.

Рисунок 2.4 – Комплексная схема замещения при однофазном КЗ на землю
Входное сопротивление схемы относительно контактов выключателя определяется по выражению:
. (2.17)
ПВН на полюсе выключателя при однофазном КЗ на землю определяется по выражению:
, (2.18)
где — эквивалентная индуктивность схемы при однофазном КЗ на землю.
Скорость ПВН на полюсе выключателя без учета емкости схемы при однофазном КЗ на землю определяется по выражению (2.15), в котором необходимо заменить на .
При учете емкости схемы скорость ПВН на полюсе выключателя определяется по выражению (2.16) , в которое необходимо подставить
, (2.19)
где — эквивалентная емкость схемы при однофазном КЗ на землю.
При трехфазном КЗ без замыкания на землю входное сопротивление схемы принимается равным .
ПВН на полюсе выключателя определяется по выражению (2.13), где вместо и необходимо подставить и .
Скорость ПВН на полюсе выключателя без учета емкости схемы определяется по выражению (2.15), где вместо необходимо подставить, а при учете емкости схемы по выражению (2.16), где .
Приведенные выражения позволяют исследовать лишь первую стадию переходного процесса восстанавливающегося напряжения на контактах выключателя, за которой следует вторая стадия [5]. Вторая стадия переходного процесса является следствием волновых процессов в длинных линиях. Напряжение второй стадии переходного процесса рассматривается как волна, распространяющаяся от выключателя по линиям со скоростью света. Достигнув концов линии, волны отражаются с коэффициентом , равным единице при входном сопротивлении схемы , равном бесконечности (короткая линия разомкнута) или с коэффициентом, равным “минус” единице при входном сопротивлении схемы равным нулю.
Отраженные волны возвращаются к станции. Первую отраженную волну следует ожидать по короткой линии спустя время
, (2.20)
где — время пробега волны на длине , мкс;
— длина линии, км;
— скорость распространения света, км/с.
Отраженная волна, достигнув сборных шин, набегает на входное сопротивление , которое состоит из результирующего волнового сопротивления длинных линий и индуктивности станции , включенных параллельно. Данная волна частично отражается, частично проникает в сопротивление и изменяет ПВН на полюсе выключателя.
Отраженная волна, проникшая в сопротивление , равна по величине
, (2.21)
где — коэффициент проникновения отраженной волны;
— количество линий, не считая поврежденной.
Наибольшее изменение ПВН создается первой отраженной волной, которая накладывается на кривую ПВН первой стадии переходного процесса.
На рисунке 2.5 показан примерный вид кривых ПВН первой стадии переходного процесса при различных видах КЗ, а на рисунке 2.6 показан вид расчетной кривой ПВН с учетом второй стадии переходного процесса.

Рисунок 2.5-Кривые ПВН первой стадии переходного процесса при различных видах КЗ

Рисунок 2.6-Расчетная кривая ПВН с учетом второй стадии переходного процесса
Кривую 2а (рисунок 2.6) рассчитанную по выражению (2.21) необходимо сопоставить с нормированной характеристикой ПВН выключателя 1, намеченного к установке.
Если расчетная кривая ПВН 2а выходит за пределы нормированной характеристики необходимо произвести уточненный расчет второй стадии переходного процесса.

При уточненном расчете считают, что входное сопротивление

станции состоит из активного сопротивления и индуктивности , которые включены параллельно.
Волна, увеличивающая ПВН на полюсе выключателя, при уточненном расчете определяется с помощью кривой приведенной на рисунке 2.7. По оси абсцисс отложено отношение , а по оси ординат отношение
. (2.22)

Рисунок 2.7-Кривая для определения накладывающегося напряжения
Для определения кривой накладывающегося напряжения необходимо умножить ординаты вспомогательной кривой на ,
где — амплитуда среднего эксплуатационного фазного напряжения;
— число линий, не считая поврежденной.
Примерный вид уточненной кривой второй стадии переходного процесса приведен на рисунке 2.6, кривая 2б.
Выбор выключателей рекомендуется производить в виде таблицы 2.4.

2.2 Выбор разъединителей, отделителей и короткозамыкателей

Разъединитель, как коммутационный аппарат, предназначен для отключения и включения электрической цепи без тока и для создания видимого разрыва цепи между частями, оставшимися под напряжением, и аппаратами, выведенными в ремонт.
Таблица 2.4 — Расчетные и каталожные данные выключателя

Что такое номинальный ток в электротехнике

Толковый словарь русского языка академика Ожегова объясняет значение слова «номинальный», как обозначенный, называющийся, но не исполняющий своих обязанностей, назначения, то есть фиктивный.

Это определение довольно точно поясняет электротехнические термины номинального напряжения, тока и мощности. Они вроде бы есть, назначены и определены, но на самом деле служат только как ориентиры для электриков. Действительные численные выражения этих параметров в реальности отличаются от назначенных величин.

К примеру, всем нам хорошо знакома переменная однофазная сеть с напряжением 220 вольт, которое считается номинальным. На самом деле его величина по ГОСТ может достигать только до верхнего предела 252 вольта. Так действует государственный стандарт.

Такая же картина просматривается и с номинальным током.

Принцип определения номинального тока

За основу выбора его величины взят максимально возможный тепловой нагрев электрических проводников, включая их изоляцию, которые должны неограниченно долгое время надежно работать под нагрузкой.

При номинальном токе поддерживается тепловой баланс между:

нагревом проводников от температурного воздействия электрических зарядов, описанным действием закона Джоуля—Ленца;

охлаждением за счет отвода части тепла в окружающую среду.

Тепловой баланс проводника с током

При этом тепло Q1 не должно оказывать влияние на механические и прочностные характеристики металла, а Q2 — на изменение химических и диэлектрических свойств слоя изоляции.

Читайте так же:
Расположение выключателей от дверных проемов

Даже при небольшом превышении номинального значения тока через какой-то промежуток времени потребуется снимать напряжение с электрооборудования для охлаждения металла токовода и изоляции. В противном случае их электротехнические свойства нарушатся и возникнет пробой диэлектрического слоя или деформация металла.

Любое электрическое оборудование (включая источники тока, его потребители, соединительные провода и системы, защитные устройства) рассчитывается, проектируется и изготавливается под работу при определенном номинальном токе.

Его величина указывается не только в технической заводской документации, но и на корпусе или шильдиках электрооборудования.

Примеры обозначения номинального тока на корпусе электрических приборов

На приведенной фотографии четко видны величины номинального тока 2,5 и 10 ампер, которые выполнены методом штамповки при изготовлении электрической вилки.

С целью стандартизации оборудования ГОСТом 6827-76 введен в действие целый ряд значений номинальных токов, при которых должны работать практически все электроустановки.

Ряд номинальных токов электрооборудования

Как подбирается защитное устройство по номинальному току

Поскольку номинальный ток определяет возможность длительной работы электрооборудования без каких-либо повреждений, то все защитные устройства по току настраиваются на срабатывание по его превышению.

На практике довольно часто встречаются ситуации, когда на непродолжительный период в схеме питания возникает перегрузка по различным причинам. При этом температура металла проводника и слоя изоляции не успевают достичь того предела, когда возникает нарушение их электротехнических свойств.

Значение синусоиды номинального тока и выбор параметров защит

По этим причинам зона перегруза выделена в отдельную область, которая ограничивается не только величиной, но и продолжительностью действия. При достижении критических температурных значений слоя изоляции и металла проводника напряжения с электроустановки должно сниматься для ее охлаждения.

Эти функции выполняют защиты от перегруза, работающие по термическому принципу:

Они воспринимают тепловую нагрузку и настраиваются на ее отключение с определенной выдержкой времени. Уставка защит, выполняющих «мгновенную» отсечку нагрузки, лежит чуть выше тока перегрузки. Термин «мгновенная» на самом деле определяет действие за минимально возможный промежуток времени. Для современных самых быстрых токовых защит отсечка выполняется за время, чуть меньшее 0,02 секунды.

Рабочий ток в обычном режиме питания чаще всего по своей величине меньше номинального.

В приведенном примере разобран случай для схем переменного тока. В цепях постоянного напряжения принципиального отличия соотношений между рабочим, номинальным током и выбором уставок для работы защит нет.

Как настроен автоматический выключатель для работы по номинальному току

В защитах промышленных устройств и бытовых электросетей наибольшее распространение получили автоматические выключатели, которые совмещают в своей конструкции:

тепловые расцепители, работающие с выдержкой времени;

токовую отсечку, очень быстро отключающую аварийный режим.

При этом автоматические выключатели изготавливаются на номинальное напряжение и ток. По их величине выбирают защитные устройства для работы в конкретных условиях определенной схемы.

Для этого стандартами определены 4 типа времятоковых характеристик для разных конструкций автоматов. Они обозначаются латинскими буквами А, В, С, D и созданы для гарантированного отключения аварий с кратностью тока номинального режима от 1,3 до 14.

Автоматический выключатель по времятоковой характеристике с учетом температуры окружающей его среды подбирается под определенный вид нагрузки, например:

схемы со смешанными нагрузками и умеренными пусковыми токами;

цепи с большой перегрузочной способностью.

Принцип формирования времятоковой характеристики автоматического выключателя

Времятоковая характеристика может состоять из трех зон действия, как показано на картинке, или двух (без средней).

Обозначение номинального тока можно найти на корпусе автомата. На картинке показан выключатель на котором обозначена величина 100 ампер.

Это означает, что он сработает (отключится) не от номинального тока (100 А), а от его превышения. Допустим, если отсечка автомата настроена на кратность 3,5, то ток величиной 100х3,5=350 ампер и более будет ею остановлен без выдержки времени.

Когда же тепловой расцепитель настроен на кратность 1,25, то при достижении значения 100х1,25=125 ампер отключение произойдет через какое-то время, например, один час. При этом схема этот период будет работать с перегрузом.

Следует учитывать, что на время отключения автомата влияют и другие факторы, связанные с поддержанием температурного режима защиты:

условия окружающей среды;

степень заполнения распределительного щитка аппаратурой;

возможности нагрева или охлаждения от посторонних источников.

Как подбирается электропроводка и автоматический выключатель по номинальному току

Для определения основных электротехнических параметров защит и проводов в обязательном порядке учитывается приложенная к ним нагрузка. Для этого проводят ее расчет по номинальной мощности подключенных в работу приборов с учетом коэффициента их занятости.

Например, к розеточной группе, расположенной на кухне, подключены в работу посудомоечная машина, мультиварка, электродуховка и микроволновая печь которые потребляют суммарную мощность в обычном режиме 5660 ватт (с учетом периодичности включений).

Номинальное напряжение бытовой сети 220 вольт. Определим ток нагрузки, который будет проходить через провода и защитные устройства делением мощности на напряжение. I=5660/220=25,7 А.

Далее смотрим таблицу ряда номинальных токов для электрооборудования. В ней автоматического выключателя на такой ток нет. Но, производители выпускают автоматы на 25 ампер. Его величина ближе всего соответствует нашим задачам. Поэтому его и выбираем за основу защитного устройства для электропроводки потребителей розеточной группы.

После этого нам необходимо определиться с материалом проводов и поперечным сечением. Возьмем за основу медь, поскольку алюминиевая проводка даже в бытовых целях уже не пользуется популярностью из-за своих эксплуатационных характеристик.

В справочниках электриков приводятся таблицы подбора проводов из разных материалов по токовой нагрузке. Возьмем наш случай с учетом того, что проводка выполняется отдельным кабелем с полиэтиленовой изоляцией, спрятанным в штробу стен. Температурные пределы примем соответствующими комнатным условиям.

Таблица нам представит сведения, что минимально допустимое поперечное сечение стандартного медного провода для нашего случая — 4 мм квадратных. Меньше брать нельзя, но лучше его увеличить.

Иногда возникает задача подбора номинала защит под уже работающую проводку. В этом случае вполне оправданно определить электроизмерительным инструментом ток нагрузки сети потребителей и сравнить его с тем, который рассчитан вышеприведенным теоретическим методом.

Таким способом термин «номинальный ток» помогает электрикам ориентироваться в технических характеристиках электрооборудования.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector