Sanitaryhygiene.ru

Санитары Гигиены
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Светодиодный драйвер тока схема

Светодиодный драйвер тока схема

ДРАЙВЕР ДЛЯ СВЕРХЯРКИХ СВЕТОДИОДОВ

Микросхема HV 9910 выпускается фирмой Supertex I nc . для применения в светодиодных лампах, питающихся напряжением от 8 до 450 V (!).
Микросхема представляет собой импульсный источник стабильного тока через светодиод или светодиодную матрицу составленную из последовательно включенных суперярких светодиодов . Входное напряжение постоянного тока мо жет быть от 8 до 450 V ( при работе от переменного тока используется мостовой или другой выпрямитель ).
Микросхема работает совместно с внешним высоковольтным MOSFET транзистором . Частоту переключения можно регулировать от нескольких десятков килогерц до 300 кГц путем изменения сопротивления одного резистора , подключенного к выводу RT . Ток через светодиоды можно задать от единиц миллиампер до 1 А путем изменения величины контрольного сопротивления , включенного в цепи истока выходного транзистора . Напряжение с этого сопротивления поступает на вывод CS микросхемы , и по величине этого напряжения вычисляется величина тока .
Кроме того , яркостью светодиода ( или светодиодов ) можно управлять подачей управляющих импульсов на вывод PWM , при этом происходит модуляция этими импульсами более высокочастотного импульсного сигнала , на котором происходит преобразование. Соответственно скважности модулирующих импульсов изменяется и яркость светодиодов . При подаче логической единицы на вывод PWM генератор включен , а при подаче нуля — выключен . В микросхеме имеется встроенный стаби лизатор напряжения 7,5 V, который может быть использован для системы управления . Частоту генератора можно установить в диапазоне от 25 до 300 кГц изменением сопротивления резистора на выводе Rt ( или Rosc ). Частота определяется по формуле : F = 25000/( R +22). Частота выражена в кГц , сопротивление в кОм . Частота импульсов ШИМ , подаваемых на вывод PWM может быть от 100 Гц до 5 кГц . При этом , скважность импульсов может быть от нуля до 100% , то есть , практически любая . Соответствующим образом будет изменяться яркость светодиода ( или светодиодов ). Сопротивление контрольного резистора в цепи истока выходного транзистора выбирают таким , чтобы при максимальном токе напряжение на нем было равно 0.25 V .

Используя подобный драйвер Вы однозначно избежите злоключений, кторые постигли меня — спешка в при включении мощных светодиодов разлучила меня с несколькими, пусть и не очень дорогими светодиодами:

Выход я конечно нашел — собрал стабилизатор тока, но только максимально к нему можно подключить всего два светодиода:

Светодиоды покупал ЗДЕСЬ, но товар видимо закончился, поэтому в следующий раз буду брать ЗДЕСЬ. Разумеется в планах есть покупка и описанного в статье драйвера для светодиодов. Результаты поисков ЗДЕСЬ.

По поводу мощных светодиодов для освещения остается добавить, что ТЕПЛЫЙ СВЕТ лучше для жилых помещений, он хоть немного тусклее, но намного приятней глазу, а вот для уличных фонарей лучше брать ХОЛОДНЫЙ — светит заметно ярче.

Разумеется, что это не единственная схема драйвера для светодиодов. Можно использовать и схемы работающие в линейном режиме стабилизатора тока. Для начала схема подобного драйвера была исследована в симуляторе, причем проверялись практически все режимы работы с различным количеством светодиодов и при различных величинах напряжения питания:

В приведенной схеме диодный мост и сглаживающий фильтр сетевого напряжения питания заменен на эквивалент — источник постоянного тока с напряжением 310 вольт. Проверка показала возможность запитки до 50-60 штук светодиодов с током от 15 до 25 мА, при этом диапазон питающего сетевого напряжения составляет от 160 до 260 вольт без изменения яркости свечения. Если диапазон питания уменьшить, то возможно подключение и 60-70 светодиодов. Единственный недостаток данного драйвера — довольно высокое тепловыделение на силовом транзисторе и тем оно выше, чем мощнее будут светодиоды. Поэтому при использовании данного драйвера необхдимо предусмотреть соответствующий радиатор для силового транзитора. Для питания сорока светодиодов при токе 24-25 мА радиатора от чипсета материнской платы треьего Пентиума вполне хватило.
Более подробно об этой схеме линейного драйвера можно посмотреть в видео:

В видео использованы светодиоды купленные ЗДЕСЬ.

На схеме установлено 84 светодиода и номинал измерительного резистора составил 3,6 Ома. Однако при первичных тестах от пониженного напряжения стало понятно, что ток в 0,15 А для этих светодиодов слишком велик и после нескольких подюоров измерительный резистор стабилизатора тока приобрел номинал равный 26 Омам. Плата со светодиодами была установлена на радиаотор через термопасту и через 20-30 минут нагревается до температуры 60 градусов, т.е. как бы и этого многовато.
По поводу этой матрицы было снято видео и благодаря подписчику LINKS_234 стала доступна более расширенная информация по пооводу этих и им аналогичных светодиодов.

Использования данного стабилизатора тока в схеме светодиодного драйвера на светодиодах SMD.

Прежде всего удалось выявить более-менее надежного продавца, чьи светодиоды соответствуют заявленым в описании характеристикам. Светодиоды конечно же несколько дороже, однако тут уж выбирайте сами — либо цена, либо качество.
Я покупал ЗДЕСЬ, а надо было покупать светодиоды ЗДЕСЬ.
Кроме всего прочего так же выяснилось, что совсем не обязательно самому паять SMD светодиоды, поскольку уже есть уже ГОТОВЫЕ СВЕТОДИОДНЫЕ МАТРИЦЫ на различные мощности. Разннобразие и мощностной диапазон просто огромный и я обязательно что то для себя приобрету.
Было бы не справедливо умолчать еще об одной интересной ссылке — светодиодные лампы на 220 вольт нового поколения. Конструктив данных ламп провел впечатление, а положительный отзыв давнего проверенного подписчика позволяет верить тому, что лампы действительно хороши. Лампы на 3, 7, 9 и 12 Вт.

Как и положено есть возможность выбора ТЕПЛОГО или ХОЛОДНОГО света, впрочем подроности смотрите сами ЗДЕСЬ.

LED драйвер схема

В нашей разработке, мы взяли LED элемент мощностью 1 ватт, но можно изменить радиокомпоненты Led драйвера и использовать светодиоды и большей мощности.

Схема Led драйвера для питания светодиодов

  • входное напряжение: 2В до 18В
  • выходное напряжение: на 0,5 меньше, чем входное напряжение (0.5V падение на полевом транзисторе)
  • ток: 20 ампер
Читайте так же:
Ставим выключатели со светодиодами

В качестве источника питания я применил готовый трансформаторный блок питания на 5 Вольт, т.к для питания одного светодиода его вполне хватит. Радиатор на мощный транзистор не нужен, т.к ток около 200 мА. Поэтому резистор R3 будет около 2 кОм (I=0,5/R3). Он является установочным и закрывает транзистор Q2, если течет повышенный ток

Транзистор FQP50N06L в соответствии с паспортными данными работает только до 18 Вольт, если требуется больше вам следует воспользоваться справочником по транзисторам.

Led драйвер в сборе

Т.к данная схема очень проста собрал ее без печатной платы с помощью навесного монтажа. Следует также сказать о назначении транзисторов в этой конструкции. FQP50N06L применен в качестве переменного резистора, а 2N5088BU в роли токового датчика. Он также задает обратную связь, которая следит за параметрами тока и держит его в заданных пределах.

Эта простая схемка отлично зарекомендовала себя в индикации на приборной панели авто, благодоря своей простоте и надежности.

Эту схему можно использовать для запитки светодиодов как в автомобиле и не только в нем. Данная схема ограничивает ток и обеспечивает нормальную работу светодиода. Этот драйвер может запитать светодиоды мощностью 0,2-5 ватт от 9-25 Вольт благодоря применению микросхемы стабилизатора напряжения LM317.

Сопротивление резистора можно определить по следующей формуле R = 1.25/I, где I — ток светодиода в Амперах. Если вы хлтите применить мощные светодиоды, микросхему LM317 обязательно установите на теплоотвод.

Для стабильной работы схемы Led драйвера на LM317, входное напряжение должно немного превышать напряжение питания светодиода примерно на 2 вольта. Диапазон ограничения выходного тока составляет 0,01А…1,5А и с выходным напряжением до 35 вольт. При необходимости схему можно подключить к самодельному блоку питания.

На рисунке ниже показана схема светодиодного драйвера мощность которого рассчитана на 6 светодиодов, в роли питающего источника используется батарея 1,5В типа АА. Катушка индуктивности L1 намотана на ферритовое кольцо диаметром 10 мм и содержит 10 витков медного провода диаметром 0,5 мм.

За основу схемы взята микросхема МАХ756, она проектировалась для переносных устройств с независимым питанием. Драйвер продолжает работать даже при понижении питающего напряжения до 0,7 В. Если возникнет необходимость выходное напряжение драйвера можно задать от3 до 5 вольт при токе нагрузки до 300мА. КПД при максимальной нагрузке более 87 %.

Работы драйвера на микросхеме MAX756 можно условно поделить на два цикла, а именно:

Первый: Внутренний транзистор микросхеме в данный момент открыт и через дроссель течет линейно-нарастающий ток. В электромагнитном поле дросселя копится энергия. Конденсатор C3 потихоньку разряжается и отдает ток светодиодам. Продолжительность цикла около 5 мкс. Но этот цикл может быть завершен досрочно, в том случае, если максимально допустимый ток стока транзистора возрастет более 1 А.

Второй: Транзистор в этом цикле заперт. Ток от дросселя через диод заряжает конденсатор C3, взамен того, что он потерял в первом цикле. С увеличением напряжения на конденсаторе до некоторого уровня данный этап цикла финиширует.

Микросхема MAX756 переходит в режим с постоянной продолжительностью фазы (соответственно 5 мкс и 1 мкс соответственно). Выходное напряжение в этом случае не стабилизировано, оно снижается, но остается по возможности максимально возможным.

К схеме подключены четыре светодиода типа L-53PWC «Kingbright». Так как при токе 15 мА прямое падение на светодиодах будет 3,1 вольта, лишние 0,2 вольта погасит резистор R1,. По мере прогрева светодиодов, падение напряжения на них снижается, и резистор R1 в каком-то роде стабилизирует ток потребления светодиодов и их яркость свечения.

Дроссель можно взять самодельный, намотав проводом ПЭВ-2 0,28 на сердечник (кольцо размером К10x4x5 из магнитной проницаемостью 60) от сетевого фильтра 35 витков. Так же можно взять и готовые дроссели с индуктивностью от 40 до 100 мкГн и рассчитанные на ток более 1А

Микросборка CAT3063 это трех канальный светодиодный драйвер, который с минимальным внешним обвесом из 4-х емкостей и резистора отлично подходит для питания светодиодов.

С помощью R1 осуществляется настройка потока выходного тока. В момент включения, светодиодные драйверы будут работать в 1Х режиме, т.е выходное направление будет равно входному. Если выходного напряжения будет нехватать для запуска и работы светодиодных драйверов, то произойдет автоматическое увеличение уровня входного тока, в 1,5 Х раза. Сопротивление в схеме будет меняться в зависимости от тока светодиода (мA). Допустим, если он будет минимальным и равным 1 мА — R1 — 649кОм. 5 мА — 287 кОм, 10 мА — 102 кОм, 15 мА — 49.9 кОм, 20 мА — 32.4 кОм, 25 мА — 23.7 кОм, 30 мА — 15.4 кОм.

Ремонт драйвер для светодиодного светильника 36 ватт

Предлагаю вашему вниманию схемы драйверов светодиодных светильников, которые мне пришлось недавно ремонтировать. Начну с простой (фото 1, справа) и схема на рисунке 1.


Светодиодные светильники. Фото 1.


Драйвер светодиодного светильника на CL1502. Рис. 1.

В схеме этого драйвера установлена микросхема CL1502. Микросхем с подобными функциями выпущено уже много, и не только в корпусе с 8 ножками. На эту микросхему в интернете есть много технических данных, к примеру в [1]. Собран драйвер по «классической» схеме. Неисправность была в выгорании пары светодиодов. Первый раз просто закоротил их, так как находился вдали от «цивилизации». Тоже сделал и во второй раз. И когда сгорела третья пара, я понял, что жить этому светильнику осталось мало. Простым закорачиванием пар светодиодов, так просто не обойдёшься. Требовалось что-то по-кардинальные. Ранее я изучал схемотехнику и работу подобных микросхем, с целью укоротить светодиодную лампу, в корпусе трубчатой стеклянной люминисцентной 36 Ватт, с длины 120 сантиметров в 90, так как был в наличии такой светильник, установленный над рабочим столом. И всё удалось и работает. А здесь. Насколько я понял работу подобных светильников, с применением таких драйверов, то ничего плохого не должно происходить после закорачивания хотя бы всех светодиодов, кроме последней пары. Ведь всё в них решает датчик тока, в данной схеме это резисторы R3 и R4. Напряжение выделенное этими резисторами, попадая через выводы 7 и 8 микросхемы CL1502 к компаратору выключения силового ключа работают отлично. Но что-то всё же жжёт светодиоды. Но что? Моё предположение — их жжёт сам драйвер! Светодиоды применённые в этом светильнике, похожи на 2835SMDLED (0,5 Вт одного светодиода). И если это действительно они, то заявленная мощность светильника вполне оправдана. Но у меня, сильные подозрения, что в светильнике стоят 3528SMDLED, которые имеют параметры, чуть ли не на порядок ниже. Но понять мне это очень трудно, так как на SMD светодиодах нет обозначений. Что сделал я? Я убрал с платы резистор R4. При этом уменьшился ток через светодиоды и… светодиоды перестали сгорать. Что интересно, в строительном вагончике, в котором стояли три светильника одного типа, последовательно пришлось ремонтировать все три. И везде пришлось снять по одному резистору. И да, везде упал световой поток, хотя глазом это и трудно определить, но если сравнивать, то заметно.

Читайте так же:
Что такое управляющий ток светодиода

В другом вагончике, было два светильника с внешними размерами 595х595 мм.. И они тоже «горели». В этих светильниках ячейки состояли из четырёх светодиодов в параллели и было таких 28 ячеек. Так как и там была подобная схема (поднять не удалось), то просто выпаял по одному резистору.

В итоге, можно сделать вывод, что ремонт можно выполнять, по подобной методике, то есть уменьшать ток через светодиоды, так как лучше, пусть светят темнее, чем совсем погаснут. Хотя конечно, правильнее поменять все светодиоды на 2835SMDLED, но это при их наличии.


Драйвер светодиодного светильника на B77CI. Рис. 2.

Схема второго драйвера, изображённого на рисунке 2, я «поднял» со светильника, который нашёл в металлоломе, с механическими поломками корпуса. На рисунке 3 схема четырёх плат светодиодов по 9 Вт каждая. Хотел снять светодиоды для запчастей. И даже, не сразу заметил невзрачную коробочку с драйвером. Схема оказалась почти «монстром».


Фонарь светодиодного светильника. Рис. 3.


Внешний вид платы драйвера на B77CI. Фото 2.

Наличие двух микросхем, двух мощных полевых транзисторов, двух дросселей и двух электролитических конденсаторов 220 мк х 100 В включенных параллельно, указывало на то, что разработчики поработали на славу. Так же присутствует довольно хорошая схема фильтров (смотрите фото 2). Микросхема DX3360T — это, по всей видимости, стабилизатор напряжения, и возможно, с корректором мощности. Я в интернете нашёл только невзрачную картинку, без описания. А на микросхему B77CI не нашёл ни чего, и названия выводов на схеме ставил, по интуиции. В работе этот драйвер не видел. Но предполагаю хорошую работу. Но если, придётся уменьшать ток через светодиоды, то нужно или убрать с платы один-два резистора Rs4..Rs6, или менять на другие, расчётные.

И ещё. Совсем не понятно, как в подобных светильниках организован отвод тепла от светодиодов. Ведь они запаиваются на платки из фольгированного стеклотекстолита, шириной в 5 мм. и толщиной примерно в 1 мм.? Думаю, что почти ни как. Всё ширпотреб.

Схема драйвера на CPC9909

Современные импульсные драйверы для светодиодных ламп имеют несложную схему, поэтому ее можно легко смастерить даже своими руками. Сегодня, для построения драйверов, производится ряд интегральных микросхем, специально предназначенных для управления мощными светодиодами. Чтобы упростить задачу любителям электронных схем, разработчики интегральных драйверов для светодиодов в документации приводят типичные схемы включения и расчеты компонентов обвязки.

Общие сведения

Американская компания Ixys наладила выпуск микросхемы CPC9909, предназначенной для управления светодиодными сборками и светодиодами высокой яркости. Драйвер на основе CPC9909 имеет небольшие габариты и не требует больших денежных вложений. ИМС CPC9909 изготавливается в планарном исполнении с 8 выводами (SOIC-8) и имеет встроенный стабилизатор напряжения.

Благодаря наличию стабилизатора рабочий диапазон входного напряжения составляет 12-550В от источника постоянного тока. Минимальное падение напряжения на светодиодах – 10% от напряжения питания. Поэтому CPC9909 идеальна для подключения высоковольтных светодиодов. ИМС прекрасно работает в температурном диапазоне от -55 до +85°C, а значит, пригодна для конструирования светодиодных ламп и светильников для наружного освещения.

Назначение выводов

Стоит отметить, что с помощью CPC9909 можно не только включать и выключать мощный светодиод, но и управлять его свечением. Чтобы узнать обо всех возможностях ИМС, рассмотрим назначение ее выводов.

  1. VIN. Предназначен для подачи напряжения питания.
  2. CS. Предназначен для подключения внешнего датчика тока (резистора), с помощью которого задаётся максимальный ток светодиода.
  3. GND. Общий вывод драйвера.
  4. GATE. Выход микросхемы. Подает на затвор силового транзистора модулированный сигнал.
  5. PWMD. Низкочастотный диммирующий вход.
  6. VDD. Выход для регулирования напряжения питания. В большинстве случаев подключается через конденсатор к общему проводу.
  7. LD. Предназначен для задания аналогового диммирования.
  8. RT. Предназначен для подключения время задающего резистора.

Схема и ее принцип работы

Типичное включение CPC9909 с питанием от сети 220В показано на рисунке. Схема способна управлять одним или несколькими мощными светодиодами или светодиодами типа High Brightness. Схему можно легко собрать своими руками даже в домашних условиях. Готовый драйвер не нуждается в наладке с учетом грамотного выбора внешних элементов и соблюдением правил их монтажа.

схема

Драйвер для светодиодной лампы на 220В на базе CPC9909 работает по методу частотно-импульсной модуляции. Это означает, что время паузы является постоянной величиной (time-off=const). Переменное напряжение выпрямляется диодным мостом и сглаживается емкостным фильтром C1, C2. Затем оно поступает на вход VIN микросхемы и запускает процесс формирования импульсов тока на выходе GATE. Выходной ток микросхемы управляет силовым транзистором Q1. В момент открытого состояния транзистора (время импульса «time-on») ток нагрузки протекает по цепи: «+диодного моста» – LED – L – Q1 – RS – «-диодного моста».

Читайте так же:
Подключение выключателя света с двумя клавишами с подсветкой schneider

принцип работы схемы

За это время катушка индуктивности накапливает энергию, чтобы отдать её в нагрузку во время паузы. Когда транзистор закрывается, энергия дросселя обеспечивает ток нагрузки в цепи: L – D1 – LED – L.

цикл

Процесс носит циклический характер, в результате чего ток через светодиод имеет пилообразную форму. Наибольшее и наименьшее значение пилы зависит от индуктивности дросселя и рабочей частоты.

пики

Частота импульсов определяется величиной сопротивления RT. Амплитуда импульсов зависит от сопротивления резистора RS. Стабилизация тока светодиода происходит путем сравнения внутреннего опорного напряжения ИМС с падением напряжения на RS. Предохранитель и терморезистор защищают схему от возможных аварийных режимов.

Расчет внешних элементов

Частотозадающий резистор

Длительность паузы выставляют внешним резистором RT и определяют по упрощенной формуле:

В свою очередь время паузы связано с коэффициентом заполнения и частотой:

tпаузы=(1-D)/f (с), где D – коэффициент заполнения, который представляет собой отношение времени импульса к периоду.

Рекомендованный производителем диапазон рабочих частот составляет 30-120 кГц. Таким образом, сопротивление RT можно найти так: RT=(tпаузы-0,8)*66000, где значение tпаузы подставляют в микросекундах.

Датчик тока

Номинал сопротивления RS задает амплитудное значение тока через светодиод и рассчитывается по формуле: RS=UCS/(ILED+0.5*IL пульс), где UCS – калиброванное опорное напряжение, равное 0,25В;

ILED – ток через светодиод;

IL пульс – величина пульсаций тока нагрузки, которая не должна превышать 30%, то есть 0,3*ILED.

После преобразования формула примет вид: RS=0,25/1.15*ILED (Ом).

Мощность, рассеиваемая датчиком тока, определяется формулой: PS=RS*ILED*D (Вт).

К монтажу принимают резистор с запасом по мощности 1,5-2 раза.

Дроссель

Как известно, ток дросселя не может измениться скачком, нарастая за время импульса и убывая во время паузы. Задача радиолюбителя в том, чтобы подобрать катушку с индуктивностью, обеспечивающей компромисс между качеством выходного сигнала и её габаритами. Для этого вспомним об уровне пульсаций, который не должен превышать 30%. Тогда потребуется индуктивность номиналом:

L=(USLED*tпаузы)/ IL пульс, где ULED – падение напряжения на светодиоде (-ах), взятое из графика ВАХ.

Фильтр питания

В цепи питания установлены два конденсатора: С1 – для сглаживания выпрямленного напряжения и С2 – для компенсации частотных помех. Так как CPC9909 работает в широком диапазоне входного напряжения, то в большой ёмкости электролитического С1 нет нужды. Достаточно будет 22 мкФ, но можно и больше. Емкость металлопленочного С2 для схемы такого типа стандартная – 0,1 мкФ. Оба конденсатора должны выдерживать напряжение не менее 400В.

Однако, производитель микросхемы настаивает на монтаже конденсаторов С1 и С2 с малым эквивалентным последовательным сопротивлением (ESR), чтобы избежать негативного влияния высокочастотных помех, возникающих при переключении драйвера.

Выпрямитель

Диодный мост выбирают, исходя из максимального прямого тока и обратного напряжения. Для эксплуатации в сети 220В его обратное напряжение должно быть не менее 600В. Расчетная величина прямого тока напрямую зависит от тока нагрузки и определяется как: IAC=(π*ILED)/2√2, А.

Полученное значение необходимо умножить на два для повышения надежности схемы.

Выбор остальных элементов схемы

Конденсатор C3, установленный в цепи питания микросхемы должен быть ёмкостью 0,1 мкФ с низким значением ESR, аналогично C1 и C2. Незадействованные выводы PWMD и LD также через C3 соединяются с общим проводом.

Транзистор Q1 и диод D1 работают в импульсном режиме. Поэтому выбор следует делать с учетом их частотных свойств. Только элементы с малым временем восстановления смогут сдержать негативное влияние переходных процессов в момент переключения на частоте около 100 кГц. Максимальный ток через Q1 и D1 равен амплитудному значению тока светодиода с учетом выбранного коэффициента заполнения: IQ1=ID1= D*ILED, А.

Напряжение, прикладываемое к Q1 и D1, носит импульсный характер, но не более, чем выпрямленное напряжение с учетом емкостного фильтра, то есть 280В. Выбор силовых элементов Q1 и D1 следует производить с запасом, умножая расчетные данные на два.

Предохранитель (fuse) защищает схему от аварийного короткого замыкания и должен длительно выдерживать максимальный ток нагрузки, в том числе импульсные помехи.

Установка терморезистора RTH нужна для ограничения пускового тока драйвера, когда фильтрующий конденсатор разряжен. Своим сопротивлением RTH должен защитить диоды мостового выпрямителя от пробоя в начальные секунды работы.

Другие варианты включения CPC9909

Плавный пуск и аналоговое диммирование

При желании CPC9909 может обеспечить мягкое включение светодиода, когда его яркость будет постепенно нарастать. Плавный пуск реализуется при помощи двух постоянных резисторов, подключенных к выводу LD, как показано на рисунке. Данное решение позволяет продлить срок службы светодиода.

Также вывод LD позволяет реализовывать функцию аналогового диммирования. Для этого резистор 2,2 кОм заменяют переменным резистором 5,1 кОм, тем самым плавно изменяя потенциал на выводе LD.

Импульсное димирование

Управлять свечением светодиода можно путем подачи импульсов прямоугольной формы на вывод PWMD (pulse width modulation dimming). Для этого задействуют микроконтроллер или генератор импульсов с обязательным разделением через оптопару.

Кроме рассмотренного варианта драйвера для светодиодных ламп, существуют аналогичные схемные решения от других производителей: HV9910, HV9961, PT4115, NE555, RCD-24 и пр. Каждая из них имеет свои сильные и слабые места, но в целом, они успешно справляются с возложенной нагрузкой при сборке своими руками.

Подключение светодиодов: практика

Итак, товарищи, сегодня я хочу представить продолжение предыдущей статьи про светодиоды. Надеюсь, в прошлый раз я уже убедил всех сомневающихся в том, что светодиоду нужен именно стабильный ток, а потому настало время перейти к конкретным схемам его получения — от простого и убогого к сложному и качественному.

Читайте так же:
Объем диффузия сила тока магнитная индукция кипение преломление света

Начнем по порядку.

1. Классика — резистор.

Подходит для маломощных (10 — 50мА) светодиодов. В более мощных случаях становится заметным низкий КПД и не особо хорошие стабилизационные возможности.

Повторю методику расчета:

Пусть среднее падение на применяемом диоде Ufw, напряжение питания U, и необходим ток диода Ifw. Тогда очевидно, что резистор должен принять на себя излишек напряжения, т.е., на нем должно падать U-Ufw вольт при рабочем токе Ifw. Откуда несложно посчитать его номинал:

Ясно, что в случае нескольких диодов Ufw заменяется на суммарное падение на цепочке.

Механизм стабилизации «на пальцах» описан в предыдущей статье. Однако, его можно объяснить и по-другому: в теории источник тока обладает бесконечным внутренним сопротивлением. Мы же здесь имеем источник напряжения, включенный последовательно с резистором. Т.е., с точки зрения диода, резистор наращивает внутреннее сопротивление источника, превращая его из источника напряжения в источник тока. Очевидно, что, чем больше резистор, тем больше такая схема похожа на идеальный источник тока и тем лучше ее параметры. Потому, еще раз, такая схема подходит только для маломощных диодов.

Перейдем к более качественным регуляторам. Но для начала я хотел бы пояснить общий принцип их действия, а для этого рассмотреть источник тока еще с одной стороны. Только что я что-то говорил про бесконечное внутреннее сопротивление — все это в согласии с теорией, никаких сомнений. Однако давайте взглянем по-другому на то, что делает источник тока: по сути, он всегда устанавливает на нагрузке такое напряжение, при котором через нее протекает заданный ток. Т.е., это источник напряжения с обратной связью по току. Таким образом, драйвер для светодиода можно сделать почти из любого стабилизатора напряжения, изменив тип его обратной связи.

2. Линейные регуляторы.

По идее, здесь должна бы быть классическая схема на LM317. Однако я хотел бы отойти от традиций и объяснить принцип работы подобного рода схем на отвлеченном примере, а заодно и проиллюстрировать все вышесказанное про обратную связь и источники тока. Кроме того, как станет очевидно, эти же принципы действуют и для импульсных схем.

Для начала разберемся с тем, как работает стандартный трехвыводной регулятор. Как подсказывает нам Капитан Очевидность, у трехвыводного регулятора имеется три вывода: вход, выход, и управляющий вход. Внутри имеется источник опорного напряжения. В процессе работы внутренняя схема сравнивает напряжение на управляющем входе с опорным, и, если опорное больше, регулятор начинает увеличивать напряжение на нагрузке. Если опорное меньше — уменьшать. При этом сам регулятор даже и не догадывается, что он стабилизатор тока или напряжения — его схема всего лишь реализует описанный алгоритм. Очевидно, что для получения желаемого эффекта стбилизации надо связать изменение напряжения на выходе и напряжения на управляющем входе с помощью какой-либо цепи. Например, если мы хотим получить постоянное напряжение, необходимо сконструировать цепь, которая будет подавать на управляющий вход напряжение больше опорного, когда выходное напряжение больше необходимого, и меньше опорного в противном случае. Очевидно, что такой цепью является обычный резистивный делитель. Собственно, классический стабилизатор напряжения на LM317:

Обычное напряжение опорного источника в LM317 — 1.25В.

Однако мы хотели стабилизировать ток. Т.е., нам нужна схема, которая будет подавать на управляющий вход напряжение меньше опорного, если выходной ток меньше заданного, и больше — если больше. Т.е., необходимо превратить изменение тока в изменение напряжения. Ясно, что здесь нам опять поможет резистор:

А теперь давайте сделаем то, что я так люблю делать — посмотрим на эту схему под другим углом. Вглядитесь, ведь здесь мы, по сути, заставляем регулятор стабилизировать напряжение на резисторе на уровне опорного (1.25В для LM317). А, поскольку резистор — линейный элемент, то при стабильном напряжении ток через него будет постоянен. Светодиод же включен последовательно со всей этой конструкцией, и потому его ток тоже будет постоянен, хотя регулятор про него ничего не знает — он просто стабилизирует напряжение на резисторе.

Из вышесказанного очевидно, что резистор можно расчитать, исходя из опорного напряжения и заданного тока:

Достоинство такого регулятора — высокая стабильность тока и простота схемы. Недостаток — низкий КПД. Кроме того, есть и чисто практическое неудобство: как нетрудно убедиться, для значительных токов (>

0.2А) расчетные номиналы сопротивлений получаются порядка десятков Ом, что создает трудности в их добыче — чаще всего приходится изготавливать оные самостоятельно, либо наматывая из, например, нихрома, либо по-разному соединяя стандартные резисторы.

3. Импульсные регуляторы.

Линейные регуляторы изменяют параметры питания нагрузки, сбрасывая излишки энергии источника на регулирующем элементе (чаще всего это транзистор). Однако существует и другой подход: сначала мы берем порцию энергии от источника, например, запасая ее в дросселе в виде магнитного поля (или в конденсаторе в виде электрического), а потом отдаем ее в нагрузку. При этом нет необходимости сбрасывать излишки, поскольку мы сразу берем энергии ровно столько, сколько ее требуется.

В соответствующей статье Википедии есть хорошая картинка:

Это один из вариантов построения импульсного преобразователя (понижающий преобразователь). Пока ключ замкнут, ток от источника протекает через катушку, и в это время в ней запасается энергия. При разомкнутом ключе индуктивность отдает накопленную энергию в нагрузку.

При всех концептуальных различиях в способе управления питанием нагрузки, алгоритм работы импульсных преобразователей не отличается от алгоритма работы линейных. Т.е., они также сравнивают напряжение на регулируюшем входе с внутренней опорой. А потому все сказанное про обратную связь в равной степени относится и к ним.

Читайте так же:
Снизить ток подсветки ob3350

Пример. Превращаем MC34063 — импульсный стабилизатор напряжения, в драйвер светодиодов:

Вывод 5 MC34063 — тот самый управляющий вход, напряжение на котором внутри сравнивается с опорным. В принципе, его можно прямо подключить туда же, куда включен неинвертирующий вход ОУ. Очевидно, при этом надо будет пересчитать резистор обратной связи по току R1 так, чтобы напряжение на нем при заданном токе было равно опорному — те же 1.25В. Однако при этих условиях мощность, рассеиваемая на нем, будет около полуватта (при токе 350мА, для которого расчитывалась эта схема), что много. Потому для повышения КПД я поставил резистор меньшего номинала, напряжение с которого усиливается с помощью ОУ. Кстати, как нетрудно видеть, такая схема имеет еще один бонус — возможность менять ток, изменяя коэффициент усиления. Кроме того, по этой же причине для нее не важен точный номинал токоизмерительного резистора.

А вообще уже давно выпускается множество специализированных светодиодных драйверов. На самом деле, основное отличие т.н. «драйвера» от простого импульсного стабилизатора состоит в том, что тот операционный усилитель, который мне пришлось поставить отдельно для MC34063, в них уже присутствует, что и дает возможность сразу ставить резисторы малого сопротивления.

В документации на драйверы дается исчерпывающая информация относительно их применения, потому я лишь для порядка приведу пример схемы включения одного из них — ZXLD1362 (просто цитата из даташита):

Кроме того, существует класс схем на основе блокинг-генератора, применяемых для питания маломощных светодиодов от батареек в тех случаях, когда приоритетом является низкая цена — таким схемам будет посвящена моя следующая статья. Однако, стоит отметить, что для той же цели также есть интегральные драйверы.

Собственно, все. Надеюсь, этот материал поможет кому-то разобраться в вопросах питания светодиодов.

    , , , ,
  • +7
  • 07 июня 2011, 13:45

Комментарии ( 22 )

Продолжаешь насаждать ту же ошибку. Важно не абсолютное значение резистора, а соотношение его и нагрузки. Поэтому мощный диод через резистор работает так же, но потери на резисторе становятся неприемлемы (т.к. маломощные — как правило на вспомогательной роли и большого вклада в общее энергопотребление прибора не вносят, а мощные — в осветительных устройствах и по сути являются единственным полезным потребителем энергии). Кроме того, стабильность тока через резистор так себе, а мощные диоды более чувствительны к отклонениям и работают обычно на пределе (тогда как индикаторные — на 10-50% предела, лишь бы светились заметно на пульте) — т.к. дороги, а света надо много.

У специализированных драйверов есть еще одно отличие. Они знают, на что нагружены. Это позволяет несколько упростить схему. Так, например, HV9961 стабилизирует средний ток диодов, хотя резистор включен в первичной цепи, где ток совершенно другой и зависит не только от выходного, но и от разницы входного и выходного напряжения. И тем не менее, оно работает — т.к. HV9961 несколько иначе обрабатывает получаемую с резистора информацию о токе.

Алсо, по импульсникам — стоило бы сделать ссылки на статьи Di Halt’а, где он на пальцах и канализации объясняет, как работают step-up и step-down конвертеры.

—> Мастерская LED освещения в Днепре —>

Для питания мощных светодиодов нужен стабилизированный ток, иначе кристалл светодиода деградирует и светодиод вскоре сгорит. Как говорят, светодиод питается током, а не напряжением, и для этого применяется стабилизатор тока или LED-драйвер, который наряду со стабилизацией тока выполняет и другие функции (регулировка яркости, защита от короткого замыкания, и т.п.). Для сборки LED-драйверов существуют специализированные микросхемы, и в интернете полно схем драйверов, но для самостоятельной сборки таких драйверов потребуются определенная оснастка, приборы, необходимые детали и опыт работы.

LM 317Однако можно быстро собрать простейший LED драйвер с приличным током стабилизации на популярной микросхеме LM317.

Эта микросхема весьма универсальна, на ней можно собрать всевозможные линейные стабилизаторы напряжения, ограничители тока, зарядные устройства… Остановимся на ограничителе тока на микросхеме LM317.

Простым языком принцип работы стабилизатора тока намикросхеме LM317.можно объяснить так: — микросхема ограничивает ток, а напряжения светодиод берет столько, сколько ему нужно.

Схема проста и состоит всего из двух деталей: самой микросхемы и задающего ток резистора.

Драйвер для LED светодиоды
Схема из даташит.
Драйвер для LED светодиоды
Или вот такой более понятный рисунок.

Напряжение на входе микросхемы должно быть минимум на 2

4 В больше, чем падение напряжения на кристалле светодиода (около 2 В потребляет сама микросхема). Схема на микросхеме LM317 позволяет ограничивать ток от 10мА до 1,5А с максимальным входным напряжением 35В. При большом перепаде напряжений и(или) больших токах микросхему нужно установить на радиатор. Если же требуется больший ток, то следует применять микросхемы из той же серии, расчитанные на больший ток, например LM350 (до 3 А); LM338 (до 5 А).

Задающий ток резистор расчитывается по следующей формуле:
R1=1,25 В/Iout, где ток стабилизации в Амперах, а сопротивление в Омах.
Например, имеем светодиод на ток 700 мА :

R=1,25/0,7A=1,785 Ом, а так как резистора на 1,785 Ом нет, то берем ближайший из стандартного ряда, т.е. 1,8 Ом.

Драйвер для LED светодиоды
Пример расчетов резисторов.

Учтите, что максимальный ток для LM317 составляет 1,5 Ампера. Также не забывайте использовать радиатор и термопасту для нее.

Конечно LM317 имеет низкий КПД, но ввиду невысокой цены и простоты сборки этим можно пренебречь.

Такой драйвер можно применять как в светодиодном тюнинге автомобиля, так и для бытовых целей, например в светодиодных светильниках.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector