Sanitaryhygiene.ru

Санитары Гигиены
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема и устройство светодиодной лампы на 220 вольт

Схема и устройство светодиодной лампы на 220 вольт

Светодиодная лампа на 220в, частота сети 50Гц, мощность 3Вт, тип LED3-JDR, производитель Camelion, цоколь E14, потребляемый ток 26mA, световой поток 235Лм. Температура свечения 4500 К. Это параметры заявленные производителем.

светодиодные светильники на 220 вольт, схемы светодиодных ламп 220в

Яркость свечения светильника визуально сопоставима с энергосберегающей лампой на 7-9 Вт. Разобрать лампу оказалось не просто. Защитное стекло приклеено на совесть, прорезал склейку по контуру, но снять его без потерь не получилось – стекло плафона очень хрупкое.

На плате с наружной стороны установлены 6 smd светодиодов неизвестного типа. На обратной стороне «драйвер». Схема питания светодиодов этой лампы не удивила: для гашения избыточного напряжения используется реактивное сопротивление конденсатора С2, далее выпрямительный мост и сглаживающий конденсатор С3, а не импульсный драйвер, как в светодиодной лампе GL5,5.

схема светодиодного светильника, диодной лампы

Принципиальная электрическая схема светодиодной лампы LED3-JDR во многом совпадает со схемой лампы Selecta-G9-220v-5w.

Конденсатор С2 полистирольный металлопленочный типа CBB22 рассчитан на использование в цепях постоянного тока и импульсных схемах, обладает эффектом самовосстанавления, хорошей изолирующей способностью и минимальными потерями на высокой частоте. Советские аналоги — конденсаторы типов К73-17, К73-44, К71-7

схемы светодиодных ламп 220 в, светодиодных фонарей

Десятиомный резистор ограничивает пиковый ток заряда С3 для исключения перегрузки выпрямительного диодного моста при включении. Через резистор R1 разряжается конденсатор С3 после выключения. С1 на плате не установлен, предназначен для увеличения тока через светодиоды при необходимости. При обрыве в цепи светодиодов напряжение на С3 без резистора R2 может достигнуть 350 вольт, а с этим резистором оно хоть и превысит номинальное для конденсатора, но не настолько, чтобы тот вышел из строя.

При напряжении в сети 237 вольт напряжение на всей цепочке диодов составило 93 В, на каждом светодиоде 15,3 вольта соответственно. Корпуса излучателей на плате типоразмера 6730 (6,7х3 мм), похоже, в каждом корпусе находится матрица из 4-х последовательно включенных светодиодов. Для светодиодов белого свечения падение напряжения при номинальном токе порядка 3,5 вольт. В нашем случае получается 3,8 вольта на каждом диоде, т.е. диоды работают в жестком режиме. Об этом говорит и то, что их температура при работе составляет 50-60 градусов Цельсия. В таком режиме диоды подвержены усиленной деградации и срок их службы будет в разы меньше, чем при номинальных токах. Производитель никогда не будет делать «вечную» лампу, иначе он разорится.

В схеме светодиодной лампы с гасящим конденсатором и выпрямительным мостом, за которым стоит конденсатор для сглаживания пульсаций ток будет очень отличаться от синусоидальной формы. Но это отдельная тема.

схема подключения светодиодных ламп

На этом фото, для сравнения, показаны однокристальные светодиоды 3528 (3,5х2,8 мм) у которых номинальный ток 20 мА.

Более эффективные (но больших габаритов) светодиодные светильники на 220 вольт можно сделать своими руками из диодной ленты. Для этого нужно взять 20 отрезков ленты 3528 на 12 вольт и спаять их последовательно, соблюдая полярность. Конденсаторы С1, С2 и резисторы R1, R2 исключаются из схемы. Вместо R1 надо поставить перемычку, а С3 должен быть на напряжение не менее 310 вольт. В данной схеме 10-тиомный резистор будет служить еще и предохранителем в случае короткого замыкания моста. На такой светильник понадобиться 1 метр открытой ленты с 60 диодами (20 отрезков по 5 сантиметров) или 0,5 метра с 120 диодами (20 отрезков по 2,5 см). Конструкция и размеры могут быть различными, главное соблюдать технику безопасности и, конечно, такой светильник должен иметь корпус с хорошей изоляцией.

Выпрямитель для светодиодной ленты на 220В

У нас в наличии два типа выпрямителей: для светодиодной ленты типа 5050 и типа 3528. Они отличаются внешними разъемами, но технически практически идентичны. Номер (тип) ленты — это тип SMD светодиодов, на которых построена лента.

Необходимость в использовании коннектора-выпрямителя при подключении к сети светодиодных лент на 220 вольт обусловлена тем фактом, что светодиодам для нормальной работы требуется постоянный ток.

Техническое описание коннектора-выпрямителя

Коннектор для подключения светодиодных лент соответствующего питающего напряжения к сети переменного тока с напряжением 220В и частотой 50Гц (бытовая электросеть) представляет собой комбинированное устройство, основой которого является элементарный выпрямитель, построенный по схеме диодного моста (рис. 1).

Принцип работы диодного моста

Рис. 1. Принцип работы диодного моста.

Диодный мост — это электронная схема, предназначенная для выпрямления переменного тока в пульсирующий постоянный. В результате преобразования, на выходе диодного моста получается пульсирующее напряжение вдвое большей частоты, чем на входе, но стабильной полярности. В коннекторе не предусмотрено иных электронных компонентов, таких как конденсатор, обычно используемых для сглаживания пульсаций в блоках питания электронных приборов.

Диодный мост выполнен в виде монолитной диодной сборки размером 23х23мм и помещен в пластиковый корпус, который одновременно является и внешним изолятором (рис. 2). К выводам диодной сборки припаиваются провода входной (переменного тока) и выходной (постоянного тока) цепей.

Сборка диодный мост Коннектор для ленты 220ВРис. 2. Диодный мост и коннектор в сборе.

Технические параметры диодного моста

  • Максимальное постоянное обратное напряжение, В: 600
  • Максимальное импульсное обратное напряжение, В: 600
  • Максимальный прямой (выпрямленный за полупериод) ток, А: 4
  • Максимальный допустимый прямой импульсный ток, А: 80
  • Максимальный обратный ток, мкА: 10
  • Максимальное прямое напряжение, В при Iпр., А= 2: 1,05
  • Максимальное время обратного восстановления, мкс: 500
  • Рабочая температура, С: -40···+150
  • Способ монтажа: пайка
  • Количество фаз: 1
Читайте так же:
Общее выключение света одним выключателем

Соединение выпрямителя и светодиодной ленты

Входная цепь, как правило, комплектуется электрической вилкой (рис. 3) типа А (слева) или типа С (справа), предназначенной, в основном, для проверки работоспособности. Обычно при монтаже в электросеть вилка обрезается, и монтаж производится путем присоединения зачищенных проводов коннектора к токоподводящей цепи.

Вилка типа А Вилка типа СРис. 3. Типы вилок, используемых в выпрямителе.

Подключение (рис. 4) коннектора к светодиодной ленте 1, рассчитанной на постоянный ток напряжением 220В производится посредством разъема 3 через вилку 2, которая входит в комплект коннектора. Вилка 2 подключается к светодиодной ленте таким образом, чтобы обеспечить надежный контакт с токопроводящими шинами ленты. Дополнительной изоляции соединения не требуется.

Подключение светодиодной ленты 220ВРис. 4. Порядок подключения светодиодной ленты 220В к выпрямителю.

В комплектацию выпрямителя также входит силиконовая заглушка, с помощью которой изолируется свободный конец светодиодной ленты (рис. 5), закрывая токопроводящие шины на конце ленты.

Силиконовая заглушкаРис. 5. Оконечная силиконовая заглушка.

Подключение светодиода к сети 220В

Для питания светодиодов необходим источник постоянного тока. Кроме этого, этот ток должен быть стабилизирован. В бытовой сети напряжение 220В, что значительно больше, чем нужно для питания обычных светодиодов. Плюс, это напряжение переменное. Как же совместить несовместимое и подключить светодиод к сети 220В? Нет ничего невозможного, но сначала попробуем разобраться, для чего это подключение может вообще потребоваться.

Прежде всего, речь может идти о подключении мощных источников света. В этом случае совсем простыми способами не обойтись, потребуются специализированные драйвера или аналогичные приборы, которые будут способны выдать стабилизированный ток большой мощности. Оставим этот вариант напоследок.

Также часто бывает необходимо к 220В подключить маломощный индикаторный светодиод — для, собственно, индикации того, что напряжение в данный момент присутствует. Или может потребоваться маломощное дежурное освещение, для которого городить сложную электронику совсем не хочется. В этих случаях, если нужные токи светодиодов не превышают 20-25мА, можно обойтись минимальным количеством дополнительных деталей. Рассмотрим эти подключения подробнее.

Самый простой способ ограничения тока — использование резистора. Этот вариант подойдет и для сети переменного тока с напряжением 220В. Необходимо только учесть один важный нюанс: 220В — это ДЕЙСТВУЮЩЕЕ напряжение. Фактически же напряжение в бытовой сети меняется в более широких пределах — от -310В до +310В. Это, так называемое, АМПЛИТУДНОЕ напряжение. Подробнее, почему так — читайте в Википедии. Для нас же важно, что для расчета значений токоограничиваюжего резистора нужно использовать не действующее, а именно амплитудное значение сети переменного тока, т.е. 310В.

Сопротивление резистора рассчитывается по привычному закону Ома:

R = (Ua — UL) / I , где Ua — амплитудное значение напряжения (310В), UL — падение напряжения на светодиодах, I — требуемая сила тока.

Токоограничивающий резистор должен быть очень мощным, поскольку на нем будет рассеиваться большое количество тепла, которое будет зависеть от рабочего тока и сопротивления резистора:

Резистор будет греться и, если окажется, что он не рассчитан на рассеивание того количества тепла, которое на нем выделяется, он достаточно эффектно сгорит. Поэтому про допустимую мощность резистора забывать ни в коем случае не следует, а для реального использования подбирать ее еще и с запасом. Если вам не хочется заниматься собственными расчетами значений резистора, можете воспользоваться «Калькулятором светодиодов».

Простые схемы для подключения светодиода к сети 220В с токоограничивающим резистором

Светодиоды способны выдержать только небольшое обратное напряжение (до 5-6В) и для работы в сети переменного тока им нужна защита. В самом простом случае для этого может быть использован диод, которые включается в цепь последовательно светодиоду. Требования к диоду — он должен быть рассчитан на обратное напряжение не менее 310В и на прямой ток, который нам нужен. Подойдет, например, диод 1N4007 — обратное напряжение 1000В, прямой ток 1А.

Второй вариант — включить диод параллельно светодиоду, но в обратном направлении. В этом случае подойдет любой маломощный диод, например, КД521 или аналогичный. Более того, можно вместо диода подключить второй светодиод (как и изображено на правой схеме). В этом случае они будут защищать друг друга и одновременно светиться.

Для ограничения тока в переменной сети можно использовать и, так называемый, балластный конденсатор. Это неполярный керамический конденсатор, который включается в цепь последовательно. Его допустимое напряжение должно быть, по меньшей мере, с полуторным запасом больше напряжения сети — не менее 400В. Ограничение тока будет зависеть от емкости конденсатора, которая может быть рассчитана по следующей эмпирической формуле:

C = (4,45 * I) / (Ua — UL) , где I — требуемый ток в миллиамперах. Значение емкости при этом получится в микрофарадах.

Использование балластного конденсатора для подключения светодиода к сети 220В

В приведенной выше схеме резистор R1 необходим для разряда конденсатора после отключения питания. Без его использования конденсатор C1 заряд в себе сохранит и пребольно ударит, если потом коснуться его выводом. Резистор R2 служит для ограничения начального тока заряда конденсатора C1. Использование его очень желательно, поскольку он продлевает срок службы других деталей, кроме того, при пробое конденсатора он будет служить предохранителем и сгорит первым, защитив остальную часть схемы.

Читайте так же:
Электро выключатели света для дома кнопочные

Оставшиеся детали — светодиод D1 и защитный диод D2 уже знакомы нам с предыдущих схем.

Почему не использовать конденсаторы вместо токоограничивающего резистора все время? Дело в том, что высоковольтные конденсаторы достаточно крупные по размеру да и при их использовании резисторы все равно нужны — готовая схема в итоге займет больше места. Преимущество же их в том, что они практически не греются.

Приведенные схемы подключения светодиодов к сети 220В часто используются на практике. Индикаторные светодиоды можно встретить в выключателях с подсветкой.

Схема обычного выключателя с подсветкой

Как можно увидеть, здесь даже не используется защитный диод! Дело в том, что сопротивление резистора очень велико, итоговый ток получается очень небольшой — около 1мА. Светодиод светится совсем не ярко, но этого свечения хватает, чтобы подсветить выключатель в темной комнате.

Схемы с балластным конденсатором используются в простых светодиодных лампах.

Схема светодиодной лампы мощностью до 5Вт

Здесь ток выпрямляется диодным мостом. Резисторы R2 и R3 служат для защиты моста и светодиодов соответственно. Для уменьшения мерцания света используется конденсатор С2.

Как же быть, если к бытовой сети переменного тока необходимо подключить светодиоды общей мощностью в десятки и даже сотни ватт? Самый правильный вариант — использовать специализированные драйвера, которые позволят это сделать. Их можно приобрести уже готовыми или собрать самому. Подробнее об этом написано в статье «Схема драйвера для светодиода от сети 220В».

Есть еще один не совсем правильный, но достаточно простой и работающий способ — можно переделать электронный балласт компактной люминесцентной лампы (обычной домашней энергосберегайки). Несложные манипуляции позволят подключить светодиоды к сети 220В, используя старую лампу, которая стала светить тускло или перестала светить вовсе. Как это сделать — читайте в статье «Простой драйвер светодиода от сети 220В».

Как сделать драйвер для светодиода своими руками?

Светодиоды практичны, долговечны, эффективны и экономны. Для стабильной работы этих полупроводниковых приборов необходима подача на их выводы электротока со строго выверенными параметрами. Для этого нужен специальный светодиодный драйвер, своими руками создать который несложно.

Светодиодный драйвер

Назначение драйверов для светодиодов

Яркость светодиодной лампы зависит от 2 параметров: тока, проходящего через нее, и идентичности характеристик полупроводников, т. к. любое несоответствие выведет детали из строя. Но современное производство не в состоянии обеспечить полностью одинаковые параметры кристаллов.

Нестабильность тока в сети 220 вольт и отличие в характеристиках приводит к деградации материала и сгоранию светодиода. Чтобы избежать этого, ставят драйвер.

Он преобразует электроток:

  • задает ему амплитуду;
  • выпрямляет – делает его постоянным;
  • подает на все элементы одинаковый ток (немного меньше максимального уровня) и не допускает их пробоя.

Ключевые особенности

Главное отличие драйвера в том, что при входном напряжении, на которое он рассчитан (например, 140-240 V), он устанавливает на светодиодах заданный уровень тока. При этом потенциал на выходе устройства может быть любым.

Основных характеристик у него 3:

  1. Номинальный ток. Он не должен превышать паспортное значение светодиода, иначе диоды сгорят или будут гореть тускло.
  2. Напряжение на выходе. Зависит от типа подключения полупроводников и их числа. Оно равно произведению падения потенциала 1 элемента на их количество и может меняться в широких пределах.
  3. Мощность. От правильного расчета этой характеристики зависит вся работа устройства. Для этого суммируют мощности всех элементов и добавляют 20-25% (запас на перегрузку).

У светодиодной лампы из 10 элементов по 0,5 Вт этот параметр будет равен 5W. С учетом перегрузки следует выбрать драйвер на 6-7 W.

Но 2 последних параметра (мощность потребления и выходное напряжение) напрямую зависят от спектра излучения светодиода. Например, элементы ХР-Е (красные) при 1,9-2,5 V потребляют 0,75 W, а зеленые – 1,25 W при питании в 3,3-3,9 V. Получается, что драйвер в 10 W способен запитать 7 диодов одного цвета или 12 другого.

Теория питания светодиодных ламп от 220 в

Лед-лампа, лента под потолком или подсветка в современном телевизоре являются совокупностью нескольких мощных небольших светодиодов, размещенных в пространстве нужным образом.

Для замены 60 W лампочки (по яркости свечения) понадобится около дюжины недорогих полупроводниковых приборов.

Если каждый из них способен пропускать ток в 1 А при напряжении 3,3 V, то в осветительную сеть их включить нельзя – сразу сгорят. Можно воспользоваться делителем из резисторов, но на них будет рассеиваться большая мощность. Поэтому КПД светильника будет небольшим.

Для снижения напряжения и преобразования тока в постоянный применяют драйверы. Внутри этих устройств могут быть различные стабилизаторы тока, емкостно-резистивные делители и т. д.

В схему могут входить транзисторы, микросхемы, конденсаторы и т. д. Такие преобразователи меняют напряжение и обеспечивают подачу нужного количества тока каждому элементу.

Разновидности светодиодных драйверов

Есть несколько типов преобразователей для полупроводниковых источников света. Основные типы – линейный и импульсный. Каждый из них создается для своих целей и имеет свои нюансы.

Линейный

Этот тип применяют часто. Его сборка, при наличии всех деталей, может длиться 5-10 минут. Наладка ему почти не нужна – он начинает работать сразу.

Читайте так же:
Таблица сечений проводов по мощности медных кабеля

В схеме присутствует линейный стабилизатор тока, который можно представить как переменный резистор, управляемый электронной схемой.

При подаче входного напряжения оно идет на регулирующий элемент и затем на схему (КТ) контроля тока. После этого оно появляется на выходе, к которому подсоединена нагрузка. Узел КТ проверяет ток и в зависимости от этого меняет сопротивление регулирующего элемента.

Недостаток подобного устройства – низкий КПД.

Схема линейного управления

Импульсный

В основе этого типа драйвера лежит другой принцип. Регулирующим элементом здесь выступают ключи с трансформатором. При подаче напряжения на обмотках начинает запасаться энергия (в магнитном поле). Ток постепенно возрастает.

Как только он достигнет нужной величины, произойдет переключение ключей. Запасенная энергия пойдет в цепь, и ток начнет уменьшаться. По достижении минимального значения вновь сработают ключи и процесс повторится.

Импульсный драйвер

Принцип работы устройства

Основная работа драйвера – создание на выходе заданного значения тока и его поддержание. Любая схема подобного типа состоит из нескольких частей:

  • сетевого фильтра, защищающего сеть от помех;
  • конденсаторно-резисторного (RC) или трансформаторного узла для снижения напряжения;
  • диодного моста для выпрямления;
  • стабилизатора тока.

Устройство с RC фильтром действует так:

  1. Конденсатор в сети переменного тока выполняет функции емкостного сопротивления. Вместе с мостом он образует делитель напряжения и уменьшает его до нужного предела. Резистор в его цепи служит для самозарядки.
  2. Сниженное напряжение поступает на стабилизатор тока, а с него – на светодиоды.

Трансформаторный узел представляет собой устройство ключевого или другого типа, управляемое генератором. Он может быть выполнен на специализированных микросхемах, высоковольтных ключевых транзисторах, простых элементах или на ШИМ контроллере.

Такой драйвер работает следующим образом:

  • при подаче питания мост выпрямляет его, и оно идет на ключи, на которых с помощью обмоток создаются противофазные напряжения;
  • одновременно с ними включается генератор, который вырабатывает импульсы и запускает драйвер;
  • ключи, включаясь попеременно, обеспечивают бесперебойную работу устройства через цепь обратной связи;
  • на выходной обмотке возникает переменное напряжение, выпрямляемое мостом или 1-2 диодами вместе с электролитическими конденсаторами;
  • далее в цепи стоит стабилизатор тока, к которому подключают светодиоды.

Принцип работы драйвера

Характеристики и отличия от блоков питания led ленты

Нельзя применить вместо преобразователя простой БП, рассчитанный на те же напряжение и ток. Хотя оба устройства (драйвер и блок led ленты) выполняют почти одну и ту же функцию – существенные различия есть.

Простой БП преобразует напряжение и выдает постоянный ток. Элементы ленты, подключаемые к нему, состоят из светодиода и резисторов. Таких узлов в ленте может быть много.

Управлять свечением полупроводника трудно, т. к. оно зависит от изменения величины тока, а он в данном узле постоянный. Для увеличения или изменения яркости в светодиодной ленте придется одновременно регулировать все резисторы, а это нереально.

Драйвер является стабилизатором тока. Светодиоды подключены к нему последовательно. Поскольку в любой стабилизатор можно вставить регулирующий элемент, то яркость полупроводников получится свободно менять. Для этого следует лишь поднять или опустить общую величину силы тока.

Блок питания для светодиодной ленты

Изготовление драйвера для светодиодов своими руками

Если в наличии пользователя есть несколько полупроводниковых кристаллов или линейка подсветки из старого телевизора, он может самостоятельно сделать источник тока для них.

Для этого следует приобрести приборы и детали или выпаять радиоэлементы из старой аппаратуры. Часто КПД устройств, сделанных своими руками, намного выше, чем у промышленных образцов.

Материалы и инструменты для работы

Для самодельного простого драйвера потребуются:

  • конденсаторы: простой 0,27 мкф на 400 V и 2 электролитических 500×16 V и 100×16 V;
  • резистор 500 кОм на 0,5 W;
  • 4 диода или готовый мост на 220 V;
  • микросхема LM317;
  • паяльник мощностью 20-40 Вт;
  • флюс и припой (желательно типа ПОС);
  • пассатижи, кусачки, плоскогубцы;.
  • многожильные изолированные проводники из меди сечением 0,35-1 мм²;
  • трубка термоусадочная;
  • мультиметр или тестер;
  • изолента;
  • плата для распайки элементов.

Макетная плата из текстолита

Схемы простого драйвера для светодиода 1 Вт и мощного

Классический преобразователь представляет собой сочетание электронного делителя напряжения и микросхемы-стабилизатора. Первый узел состоит из 2 элементов (конденсатора 0,27 мкф и резистора 500 кОм), соединенных параллельно, к которым последовательно подключен мост из диодов, выдерживающих входное напряжение.

Для сглаживания пульсаций устанавливают 2 «электролита». Первый из них 500×16 V паяют сразу после моста. Затем монтируют стабилизатор тока. За ним второй конденсатор 100×16 V.

В качестве стабилизатора часто применяют микросхему L7812, но это не совсем правильное решение. Она является линейным устройством, регулирующим напряжение, и при изменении тока может сгореть.

Схемы простого драйвера

Схема подключения

Лучше воспользоваться микросхемами LM317, LM338 или LM350, у которых есть защита от КЗ и перегрева. Питать их можно любым напряжением 5-35 V. К драйверу можно подсоединить 5-10 светодиодов.

Схема подключения проста:

  • плюс делителя идет на вход микросхемы (1 вывод);
  • общий провод через анод светодиода идет на минус радиодетали (среднюю ножку);
  • туда же через резистор, ограничивающий ток, подключен выход LM317 (3 контакт).

Установив вместо последнего элемента регулируемое сопротивление, можно изменять силу тока, т. е. яркость светодиодов в некоторых пределах.

Если нужно соорудить мощный прожектор, то драйвер придется модифицировать:

  • необходимо поднять питающее напряжение до 24 V;
  • установить стабилизатор с наибольшим током, а из предложенных микросхем только LM338 может выдавать 5А.
Читайте так же:
Светодиодная лента 12 вольт потребление тока

Ввиду большой силы тока следует установить ее на радиатор.

Схема подключения

Как собрать и настроить драйвер?

В простом преобразователе для светодиодов мало элементов. Драйвер можно собрать на специальной плате, куске фанеры или провести навесной монтаж.

Устройство не требует наладки, если взять все указанные детали. Главное – правильно рассчитать резистор, ограничивающий ток.

Сборка

Нюансы драйвера без стабилизатора тока

Многие пользователи совсем не ставят микросхему или другой подобный узел. Но отсутствие трансформатора приводит к пульсации напряжения и тока.

Яркость светодиодов при этом тоже меняется. Частично проблему решает конденсатор, установленный после моста. Если стабилизатор не установлен, то минимальная величина пульсации составит 2-5 V.

Вариант c микросхемой позволит избавиться от проблемы. Поэтому драйвер, смонтированный своими руками, по степени пульсации не уступит зарубежным аналогам.

Драйвер без стабилизатора тока

Правила расчета технических параметров

Работоспособность любого устройства зависит от правильно подобранных компонентов. Поэтому необходимо знать, как рассчитывать каждый элемент драйвера.

Емкость гасящего конденсатора определяют по формуле:

С(мкФ) = 3200*I нагрузки/√(Uвход²-Uвыход²)

Например, для светодиодов с током 300 mA :

С(мкФ) = 3200* 300 /√(220²-24²) = 4,367 мкф.

Величина ограничивающего сопротивления прямо пропорциональна количеству потребляемого тока:

  • 500 mA – 2,5 Ом;
  • 250 mA – 5 Ом;
  • 125 mA – 10 Ом.

Зная эти величины, можно рассчитать резистор для любого количества светодиодов.

Срок службы устройства

Длительность работы драйвера зависит от разных параметров. Это напряжение и ток нагрузки, качество использованных деталей, правильный расчет и многое другое. Общий срок службы устройства может составить от 1 года до нескольких десятков лет.

Светодиоды и ленты

Светодиод – простейший индикатор, который можно использовать для отладки кода: его можно включить при срабатывании условия или просто подмигнуть. Но для начала его нужно подключить.

Подключение светодиода

Светодиод – это устройство, которое питается током, а не напряжением. Как это понимать? Яркость светодиода зависит от тока, который через него проходит. Казалось бы, достаточно знания закона Ома из первого урока в разделе, но это не так!

  • Светодиод в цепи нельзя заменить “резистором”, потому что он ведёт себя иначе, нелинейно.
  • Светодиод полярен, то есть при неправильном подключении он светиться не будет.
  • Светодиод имеет характеристику максимального тока, на котором может работать. Для обычных 3 и 5 мм светодиодов это обычно 20 мА.
  • Светодиод имеет характеристику падение напряжения (Forward Voltage), величина этого падения зависит от излучаемого цвета. Цвет излучается кристаллом, состав которого и определяет цвет. У красных светодиодов падение составляет

2.5 вольта, у синих, зелёных и белых

blank Если питать светодиод напряжением ниже его напряжения падения, то яркость будет не максимальная, и здесь никаких драйверов не нужно. То есть красный светодиод можно без проблем питать от пальчиковой батарейки. В то же время кристалл может деградировать и напряжение уменьшится, что приведёт к росту тока. Но это редкий случай. Как только мы превышаем напряжение падения – нужно стабилизировать питание, а именно – ток. В простейшем случае для обычного светодиода ставят резистор, номинал которого нужно рассчитать по формуле: R = (Vcc — Vdo) / I , где Vcc это напряжение питания, Vdo – напряжение падения (зависит от светодиода), I – ток светодиода, а R – искомое сопротивление резистора. Посчитаем резистор для обычного 5 мм светодиода красного цвета при питании от 5 Вольт на максимальной яркости (2.5 В, 20 мА): (5-2.5)/0.02=125 Ом. Для синего и зелёного цветов получится 75 Ом. Яркость светодиода нелинейно зависит от тока, поэтому “на глаз” при 10 мА яркость будет такая же, как на 20 мА, и величину сопротивления можно увеличить. А вот уменьшать нельзя, как и подключать вообще без резистора. В большинстве уроков и проектов в целом для обычных светодиодов всех цветов ставят резистор номиналом 220 Ом. С резистором в 1 кОм светодиод тоже будет светиться, но уже заметно тусклее. Таким образом при помощи резистора можно аппаратно задать яркость светодиода. Как определить плюс (анод) и минус (катод) светодиода? Плюсовая нога длиннее, со стороны минусовой ноги бортик чуть срезан, а сам электрод внутри светодиода – крупнее: blank

Мигаем

blank

Мигать светодиодом с Ардуино очень просто: подключаем катод к GND, а анод – к пину GPIO. Очень многие уверены в том, что “аналоговые” пины являются именно аналоговыми, но это не так: это обычные цифровые пины с возможностью оцифровки аналогового сигнала. На плате Nano пины A0-A5 являются цифровыми и аналоговыми одновременно, а вот A6 и A7 – именно аналоговыми, то есть могут только читать аналоговый сигнал. Так что подключимся к A1, настраиваем пин как выход и мигаем!

Как избавиться от delay() в любом коде я рассказывал вот в этом уроке. https://www.youtube.com/watch?v=uaiLcCd9Tnk

Мигаем плавно

Как насчёт плавного управления яркостью? Вспомним урок про ШИМ сигнал и подключим светодиод к одному из ШИМ пинов (на Nano это D3, D5, D6, D9, D10, D11). Сделаем пин как выход и сможем управлять яркостью при помощи ШИМ сигнала! Читай урок про ШИМ сигнал. Простой пример с несколькими уровнями яркости:

blank

Подключим потенциометр на A0 и попробуем регулировать яркость с его помощью:

Как вы можете видеть, все очень просто. Сделаем ещё одну интересную вещь: попробуем плавно включать и выключать светодиод, для чего нам понадобится цикл из урока про циклы.

Плохой пример! Алгоритм плавного изменения яркости блокирует выполнение кода. Давайте сделаем его на таймере аптайма.

Теперь изменение яркости не блокирует выполнение основного цикла, но и остальной код должен быть написан таким же образом, чтобы не блокировать вызовы функции изменения яркости! Ещё одним вариантом может быть работа по прерыванию таймера, см. урок.

blank

Ещё один момент: если подключить светодиод наоборот, к VCC, то яркость его будет инвертирована: 255 выключит светодиод, а 0 – включит, потому что ток потечет в другую сторону:

Светодиодные ленты

Светодиодная лента представляет собой цепь соединённых светодиодов. Соединены они не просто так, например обычная 12V лента состоит из сегментов по 3 светодиода в каждом. Сегменты соединены между собой параллельно, то есть на каждый приходят общие 12 Вольт. Внутри сегмента светодиоды соединены последовательно, а ток на них ограничивается общим резистором (могут стоять два для более эффективного теплоотвода): Таким образом достаточно просто подать 12V от источника напряжения на ленту и она будет светиться. За простоту и удобство приходится платить эффективностью. Простая математика: три белых светодиода, каждому нужно по

3.2V, суммарно это 9.6V. Подключаем ленту к 12V и понимаем, что 2.5V у нас просто уходят в тепло на резисторах. И это в лучшем случае, если резистор подобран так, чтобы светодиод горел на полную яркость.

Подключаем к Arduino

Здесь всё очень просто: смотрите предыдущий урок по управлению нагрузкой постоянного тока. Управлять можно через реле, транзистор или твердотельное реле. Нас больше всего интересует плавное управление яркостью, поэтому продублирую схему с полевым транзистором: blank Конечно же, можно воспользоваться китайским мосфет-модулем! Пин VCC кстати можно не подключать, он никуда не подведён на плате. blank

Управление

Подключенная через транзистор лента управляется точно так же, как светодиод в предыдущей главе, то есть все примеры кода с миганием, плавным миганием и управление потенциометром подходят к этой схеме. Про RGB и адресные светодиодные ленты мы поговорим в отдельных уроках.

Питание и мощность

Светодиодная лента потребляет немаленький ток, поэтому нужно убедиться в том, что выбранный блок питания, модуль или аккумулятор справится с задачей. Но сначала обязательно прочитайте урок по закону Ома! Потребляемая мощность светодиодной ленты зависит от нескольких факторов:

  • Яркость. Максимальная мощность будет потребляться на максимальной яркости.
  • Напряжение питания (чаще всего 12V). Также бывают 5, 24 и 220V ленты.
  • Качество, тип и цвет светодиодов: одинаковые на вид светодиоды могут потреблять разный ток и светить с разной яркостью.
  • Длина ленты. Чем длиннее лента, тем больший ток она будет потреблять.
  • Плотность ленты, измеряется в количестве светодиодов на метр. Бывает от 30 до 120 штук, чем плотнее – тем больший ток будет потреблять при той же длине и ярче светить.

Лента всегда имеет характеристику мощности на погонный метр (Ватт/м), указывается именно максимальная мощность ленты при питании от номинального напряжения. Китайские ленты в основном имеют чуть меньшую фактическую мощность (в районе 80%, бывает лучше, бывает хуже). Блок питания нужно подбирать так, чтобы его мощность была больше мощности ленты, т.е. с запасом как минимум на 20%.

    Пример 1: нужно подключить 4 метра ленты с мощностью 14 Ватт на метр, лента может работать на максимальной яркости. 14*4 == 56W, с запасом 20% это будет 56*1.2

Важные моменты по току и подключению:

  • Подключение: допустим, у нас подключено ленты на 100W. При 12 Вольтах это будет 8 Ампер – весьма немаленький ток! Ленту нужно располагать как можно ближе к блоку питания и подключать толстыми (2.5 кв. мм и толще) проводами. Также при создании освещения есть смысл перейти на 24V ленты, потому что ток в цепи будет меньше и можно взять более тонкие провода: если бы лента из прошлого примера была 24-Вольтовой, ток был бы около 4 Ампер, что уже не так “горячо”.
  • Дублирование питания: лента сама по себе является гибкой печатной платой, то есть ток идёт по тонкому слою меди. При подключении большой длины ленты ток будет теряться на сопротивлении самой ленты, и чем дальше от точки подключения – тем слабее она будет светить. Если требуется максимальная яркость на большой длине, нужно дублировать питание от блока питания дополнительными проводами, или ставить дополнительные блоки питания вдоль ленты. Дублировать питание рекомендуется каждые 2 метра, потому что на такой длине просадка яркости становится заметной уже почти на всех лентах.
  • Охлаждение: светодиоды имеют не 100% КПД, плюс ток в них ограничивается резистором, и как результат – лента неслабо греется. Рекомендуется приклеивать яркую и мощную ленту на теплоотвод (алюминиевый профиль). Так она не будет отклеиваться и вообще проживёт гораздо дольше.

Видео


голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector