Sanitaryhygiene.ru

Санитары Гигиены
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Быстродействующий тиристорный выключатель постоянного тока

Быстродействующий тиристорный выключатель постоянного тока

Принудительная коммутация (выключение) тиристоров яв­ляется основой работы полупроводниковых аппаратов постоян­ного тока и средством повышения быстродействия при отклю­чении аппаратов переменного тока. Существуют различные схемные решения, которые обеспечивают кратковременное сни­жение тока в цепи с тиристорами до нуля и их выключение. Но практическое применение в электрических аппаратах нашли только конденсаторные схемы принудительной коммутации, принцип действия которых рассмотрен на примере рис. 8.1, б. Надо отметить, что по структуре, определяющей соединение элемен­тов коммутирующего контура и подключение его к выключае­мым тиристорам, узлы принудительной коммутации в аппаратах переменного тока и в аппаратах постоянного тока имеют су­щественные отличия. Однако принцип их работы, задачи и ме­тоды расчета элементов контура являются общими, которые можно рассмотреть на примере простой схемы выключателя постоян­ного тока (рис. 8.2). По характеру протекающих процессов она практически не отличается от уже рассмотренной схемы на рис.8.1, б. Однако замена механического контакта дополни­тельным тиристором VS2 позволяет существенно улучшить коммутационные характеристики аппарата и делает его более чувствительным к управлению.

Из рис. 8.2 видно, что вспомогательный (коммутирующий) тиристор VS2 может быть включен либо от анодного напряже­ния (замыканием кнопки «Стоп»), либо напряжением, снимае­мым с измерительного резистора Rш. В последнем случае напряжение на резисторе должно превысить значение, рав­ное U = Uу + UVD + Uст, где Uу – напряжение управления, доста­точное для надежного включения тиристора VS2;

UVD паде­ние напряжения на диоде VD2 и Uст – напряжение стабилиза­ции (переключения) стабилитрона VD1.

В аварийных режимах работы, сопровождающихся много­кратным увеличением тока по отношению к номинальному, от­ключение цепи осуществляется автоматически при включении тиристора VS2. Регулированием сопротивления Rш и подбором стабилитрона по параметру Uст можно заранее задать значение тока перегрузки или тока короткого замыкания (КЗ), при кото­рых произойдет отключение выключателя.

Причем высокое бы­стродействие выключателя позволяет прервать ток КЗ задолго до того момента, когда он достигнет максимального значения.

В оперативном режиме включение и отключение номиналь­ных токов производятся замыканием управляющих цепей тиристоров VS1 и VS2 соответственно кнопками управления «Пуск» и «Стоп».

Ограничение тока в управляющих цепях тиристоров осуществляется резисторами Rу. Работа схемы в этом режиме при активной нагрузке поясняется временными диаграммами на рис. 8.3.

Для надежного выключения тиристора VS1 необходимо, чтобы схемное время tс, показанное на графике изменения на­пряжения UVS1 = f(t), было больше времени выключения тири­стора. В противном случае тиристор может вновь перейти в проводящее состояние под воздействием прямого напряжения, которое прикладывается к нему в процессе перезарядки конден­сатора.

Минимальную емкость конденсатора, обеспечивающую под­держание обратного напряжения на тиристоре VS1 в течение времени tс, можно определить из анализа коммутационных процессов, происходящих непосредственно после включения ти­ристора VS2. Предполагая, что запирающая способность тири­стора VS1 в обратном направлении восстанавливается мгно­венно, уравнение разрядки кон­денсатора после включения тиристора VS2 запишем в виде

где U – напряжение источника питания; i – ток через последо­вательно соединенные Rн, Ск, VS2.

Со­отношение между емкостью конденсатора Ск и схемным вре­менем определяется следующим образом:

Учитывая, что взаимосвязь между сопротивлением Rн и то­ком в коммутируемой цепи Ik при напряжении источника U выражается формулой U=RнIk , последнее уравнение можно переписать так:

Надежное выключение тиристора VS1, обладающего време­нем выключения, равным tq, будет при tc ³ tqkq ,

где kq = 1,5…2 – коэффициент, учитывающий измене- ние tq при несовпадении тем­пературы pn-структуры, коммутируемого тока, обратного на­пряжения и скорости приложения прямого напряжения с клас­сификационными значениями. Следовательно, минимальная ем­кость коммутирующего конденсатора должна удовлетворять ус­ловию

Если нагрузка активно-индуктивная, то для обеспечения рас­сеяния энергии, запасенной в индуктивных элементах к мо­менту прерывания тока, она должна шунтироваться диодом, как это показано на рис. 8.2 штриховой линией. Расчет Ck в этом случае основывается на допущении, что ток нагрузки в тече­ние всего интервала коммутации остается неизменным. Конден­сатор Ck при этом будет разряжаться с постоянной скоростью. Минимальная емкость конденсатора должна быть

Если аппарат предназначен для отключения аварийных токов, собственная индуктивность элементов контура является недостаточной для ограничения до значений, выдерживае­мых низкочастотными тиристорами. В этом случае необходимо последовательно с коммутирующим тиристором включать до­полнительно реактор индуктивностью Lk (на рис. 8.2 это соот­ветствует переведению переключателя S в положение 2). Пара­метры элементов контура коммутации при шунтировании сило­вого тиристора VS1 обратно включенным диодом определяются выражениями

Отметим характерные для выключателей с емкостной коммута­цией тиристоров особенности.

1) При включении коммутирующего тиристора источник пи­тания и заряженный до напряжения источника конденсатор ока­зываются соединенными последовательно. Это вызывает скачко­образное увеличение тока в цепи до значения Iн=2U/Rн, что неблагоприятно сказывается на нагрузке, особенно при отклю­чении аварийных токов.

2) Интервал времени t = t3 t1 (рис. 8.2), в течение которого конденса­тор Ck перезаряжается, определяет быстродействие выключа­теля при отключении и частоту коммутаций. При повторном включении тиристора VS1 конденсатор вновь должен перезаря­диться и тем самым обеспечить готовность к последующему от­ключению аппарата. Для сокращения времени перезарядки кон­денсатора необходимо уменьшать постоянную цепи зарядки t=R1Ck. Так как емкость Ck обусловлена схемным временем tс, это можно достичь уменьшением сопротивления резистора R1.

3) Процесс отключения тока в цепи нагрузки заканчивается выключением тиристора VS2.

Для этого необходимо обеспечить ограничение тока резистором R1 (после перезарядки конденса­тора Ck) до значений I£Iн тиристора. Ввиду того, что ток удер­жания мощных тиристоров составляет десятки или сотни милли­ампер, сопротивление резистора R1 должно быть достаточно большим, что противоречит требова­нию предыдущего пункта.

Поэтому, чтобы не снизить частоту коммутаций выключа­теля, зарядка конденсатора Ck осуществляется обычно с по­мощью дополнительной зарядной цепи с малой постоянной вре­мени t от автономного источника питания.

Читайте так же:
Поплавковый выключатель pvc 1mt

4) Важной задачей при создании выключателей с емкостной коммутацией тиристоров является ограничение перенапряже­ний, возникающих на конденсаторе Ck.

Для ограничения уровня перенапряжений до приемлемых значений необходимо использовать различные дополнительные меры, например, применение двухконтурных или двух-ступенчатых коммутирую­щих узлов, с помощью которых реализуется снижение скорости спада тока в процессе его отключения и существенное умень­шение перенапряжений.

Рассмотрим в качестве примера один из способов снижения коммутационных перенапряжений в полупроводниковых аппаратах постоянного тока.

Перенапряжения в процессе отключения аппарата обуслов­лены, в основном, колеба-тельным характером перезарядки ком­мутирующего конденсатора. Уровень их зависит от параметров отключаемой цепи и динамических характеристик, используемых в сило-вой цепи СПП. Так как перенапряжения определяют тре­бования к изоляции защищаемого оборудования и изоляции са­мих аппаратов, влияют на габариты, стоимость и надежность работы систем электроснабжения в целом, необходимо стре­миться к их понижению.

В тиристорных аппаратах с емкостной коммутацией ограни­чение перенапряжений может быть достигнуто различными спо­собами. Наиболее простой из них заключается в подключении параллельно конденсатору на определенном этапе его переза­рядки линейного или нелинейного резистора. Сущность такого подхода заключается в демпфировании колебаний за счет уве­личения коэффициента их затухания. В выключателях постоян­ного тока использование линейных резисторов для шунтирования конденсаторов Ск связано с необходимостью введения в схему дополнительного коммутационного узла (обычно тиристорного), обеспечивающего прерывание тока в резисторе.

Один из возможных вариантов исполнения выключателей с двухступенчатой коммутацией тока представлен на рис. 8.4. Го­товность к отключению в схеме этого аппарата обеспечивается предварительной зарядкой конденсатора Ск от сети с указанной на рис. 8.4 полярностью. Для этого необходимо включить тиристоры VS2 и VS5, подав на них управляющие сигналы. Ток зарядки конден­сатора Ск протекает через элементы схемы LI, L2, R1, VS5, Ск, перемычку П, VS2, L3. По мере зарядки конденсатора ток в цепи тиристоров VS2, VS5 уменьшается и, когда он стано­вится меньше тока удержания, тиристоры самостоятельно вы­ключаются. При длительном номинальном режиме напряжение на конденсаторе Ск постепенно уменьшается из-за несовершен­ства собственной изоляции и вследствие утечки заряда через подключенные к конденсатору цепи с тиристорами. Для пред­отвращения значительного снижения напряжения система уп­равления должна обеспечивать периодическое включение тири­сторов VS2 и VS5. В результате на конденсаторе Ск будет ав­томатически поддерживаться постоянное напряжение, равное практически напряжению сети. Реакторы LI, L2, L3 в схеме необходимы для ограничения скорости нарастания тока при включении тиристоров и реализации колебательного режима переходных процессов.

При возникновении короткого замыкания и достижении то­ком значения уставки Iу системой управления включа­ются тиристоры VS3 и VS4. В результате выключается тиристор VS1. После изменения полярности напряжения на конденсаторе и повыше­ния его до заданного значения системой управления выда­ется сигнал на включение тиристора VS5. При этом парал­лельно конденсатору подключается резистор R1, способствую­щий ограничению дальнейшего повышения напряжения на конденсаторе. Начиная с этого момента напряжение на кон­денсаторе уменьшается вместе с уменьшением коммутируемого тока. Разрядка конденсатора осуществляется через тиристор VS3, а после его выключения – через диод VD1.

Второй этап коммутационных процессов начинается непосредственно после выключения тиристора VS3 и снижения тока до значения, опре­деляемого общим сопротивлением внешней цепи и резистора R1. В этот момент времени системой управления включается тиристор VS2, и ток начинает протекать по цепи R1, VS5, Ск, П, VS2 и VD2.

В результате напряжение на кон­денсаторе вновь изменяет полярность. По достижении им амплитудного значения противоположной полярности ток в нагрузке полностью преры­вается.

Так как полярность напряжения на конденсаторе после от­ключения соответствует исходному состоянию, выключатель го­тов к повторному срабатыванию. Причем в рассматриваемом случае, который соответствует индуктивному характеру на­грузки, напряжение на конденсаторе значительно превышает напряжение сети. При активной нагрузке напряжение на кон­денсаторе не достигает амплитудного значения, поэтому нет необходимо­сти включать тиристоры VS5 и VS2. В этом случае и после от­ключения тока остаточное напряжение на конденсаторе Uc<U. Для обеспечения готовности к работе конденсатор необходимо дозарядить.

К достоинствам принципиальных схем с двухступенчатой коммутацией тока следует отнести оптимальное использование конденсаторов, более высокие быстродействие и частоту вклю­чений. Однако это достигается значительным усложнением ком­мутирующего узла и системы управления, которая должна реа­гировать на многие параметры переходного процесса и обеспе­чивать определенную последовательность включения тиристоров.

Путевые выключатели и микровыключатели

Путевые выключатели предназначены для замыкания или размыкания контактов цепи с небольшим током в зависимости от положения рабочего органа управляемой машины или аппарата. Частным случаем путевых выключателей являются конечные выключатели, которые служат для коммутации цепей в крайних положениях органа управляемой машины.
Путевые выключатели в зависимости от способа привода контактов подразделяют на кнопочные, рычажные и шпиндельные.
В кнопочном путевом выключателе контролируемый орган машины воздействует на шток кнопочного элемента. Особенностью этого выключателя является размыкание и замыкание контактов с такой же скоростью, что и скорость контролируемого органа. При небольшой величине тока гашение дуги происходит за счет механического растяжения, и при малом растворе контактов она вообще может не погаснуть. Поэтому при скорости движения штока менее 0,4 м/мин необходимо применять выключатели с быстродействующими контактами, обеспечивающие необходимую скорость размыкания при любой скорости контролируемого органа.
Если требуется остановить машину или сделать соответствующие переключения с высокой точностью (0,3. 0,7 мм), то применяются микропереключатели. Схематический разрез такого аппарата приведен на рис. 1. Переключатель имеет один замыкающий и один размыкающий контакты с общей точкой.
Путевой микропереключатель
Рис. 1. Путевой микропереключатель:
1, 2 — неподвижные контакты; 3 — корпус; 4 — подвижный контакт; 5, 6 — фигурная и плоская части пружины; 7 — шток

Читайте так же:
Типы защит автоматических выключателей

Неподвижные контакты 1 и 2 укреплены в пластмассовом корпусе 3. Подвижный контакт 4 находится на конце специальной пружины, состоящей из плоской 6 и фигурной 5 частей. В показанном на рис. 4 положении пружина создает давление на верхний контакт 2. При нажатии на шток 7 происходят деформация пружины и переброс контакта в крайнее нижнее положение. Переход контакта из верхнего положения в нижнее совершается очень быстро (в течение 0,01 . 0,02 с), что обеспечивает надежное отключение цепи. Ход штока составляет десятые доли миллиметра. Микровыключатели серии ВКМ-ВЗГ отключают ток 2,5 А при постоянном напряжении 220 В и переменном напряжении 380 В.
Если необходимо обеспечить надежные переключения в цепях при больших ходах и токах, применяют рычажные переключатели.
Схема одного из них показана на рис. 5. Контролируемый орган воздействует на ролик 1, укрепленный на конце рычага 2. На другом конце рычага находится подпружиненный ролик 12, который может перемещаться вдоль оси рычага. В указанном на рис. 2 положении замкнуты контакты 7 и 8. Это положение механизма надежно зафиксировано защелкой 6. При внешнем воздействии на ролик 1 рычаг поворачивается против часовой стрелки. При этом ролик 12 поворачивает тарелку 11 и связанные с ней контакты 8 и 9, в результате чего контакты 7 и 8 размыкаются, а контакты 9 и 10 замыкаются.
Замыкание и размыкание контактов происходят с большой скоростью, не зависящей от скорости движения ролика 1. Это дает возможность отключать токи до 6 А при напряжении до 220 В постоянного тока. Возврат выключателя в исходное положение после прекращения воздействия на ролик 1 обеспечивает пружина 5.
Рис. 2. Рычажный путевой переключатель:
Рычажный путевой переключатель
1, 12 — ролики; 2 — рычаг; 3 — ось; 4, 5 — пружины; 6 — защелка; 7. 10 — контакты; 11 — тарелка

При необходимости производить переключение большого числа цепей с высокой точностью в качестве путевого выключателя применяют регулируемый командоконтроллер. Его вал соединяют с управляющим валом механизма либо непосредственно, либо через редуктор, обеспечивающий необходимое соотношение частот вращения управляющего вала и кулачковой шайбы.
В настоящее время промышленность выпускает бесконтактные путевые выключатели, использующие магнитный датчик и полупроводниковое реле либо геркон, управляемый постоянным магнитом.

Индуктивные датчики. Разновидности, принцип работы

Индуктивный датчик положения

В промышленной электронике индуктивные, оптические и другие датчики применяются очень широко.

Долго и постоянно имею с ними дело, и вот решил написать статью, поделиться знаниями.

Статья будет обзорной (если хотите, научно-популярной). Приведены реальные инструкции к датчикам и ссылки на примеры.

Виды датчиков

Итак, что вообще такое датчик. Датчик – это устройство, которое выдаёт определённый сигнал при наступлении какого-либо определённого события. Иначе говоря, датчик при определённом условии активируется, и на его выходе появляется аналоговый (пропорциональный входному воздействию) или дискретный (бинарный, цифровой, т.е. два возможных уровня) сигнал.

Точнее можем посмотреть в Википедии: Датчик (сенсор, от англ. sensor) — понятие в системах управления, первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину в удобный для использования сигнал.

Там же и много другой информации, но у меня своё, инженерно-электронно-прикладное, видение вопроса.

Датчиков бывает великое множество. Перечислю лишь те разновидности датчиков, с которыми приходится сталкиваться электрику и электронщику.

Индуктивные. Активируется наличием металла в зоне срабатывания. Другие названия – датчик приближения, датчик положения, индукционный, датчик присутствия, индуктивный выключатель, бесконтактный датчик или выключатель. Смысл один, и не надо путать. По-английски пишут “proximity sensor”. Фактически это – датчик металла.

Оптические. Другие названия – фотодатчик, фотоэлектрический датчик, оптический выключатель. Такие применяются и в быту, называются “датчик освещённости”

Емкостные. Срабатывает на наличие практически любого предмета или вещества в поле активности.

Давления. Давления воздуха или масла нет – сигнал на контроллер или рвёт аварийную цепь. Это если дискретный. Может быть датчик с токовым выходом, ток которого пропорционален абсолютному давлению либо дифференциальному.

Концевые выключатели (электрический датчик). Это обычный пассивный выключатель, который срабатывает, когда на него наезжает или давит объект.

Датчики могут называться также сенсорами или инициаторами.

Пока хватит, перейдём к теме статьи.

Принцип работы индуктивного датчика

Индуктивный датчик является дискретным. Сигнал на его выходе появляется, когда в заданной зоне присутствует металл.

В основе работы датчика приближения лежит генератор с катушкой индуктивности. Отсюда и название. Когда в электромагнитном поле катушки появляется металл, это поле резко меняется, что влияет на работу схемы.

принцип работы индуктивного датчика

Поле индукционного датчика. Металлическая пластина меняет резонансную частоту колебательного контура

И схема, содержащая компаратор, выдаёт сигнал на ключевой транзистор или реле. Нет металла – нет сигнала.

Схема индуктивного датчика

Схема индуктивного npn датчика. Приведена функциональная схема, на которой: генератор с колебательным контуром, пороговое устройство (компаратор), выходной транзистор NPN, защитные стабилитрон и диоды

Большинство картинок в статье – не мои, в конце можно будет скачать источники.

Применение индуктивного датчика

Индуктивные датчики приближения применяются широко в промышленной автоматике, чтобы определить положение той или иной части механизма. Сигнал с выхода датчика может поступать на вход контроллера, преобразователя частоты, реле, пускателя, и так далее. Единственное условие – соответствие по току и напряжению.

Работа индуктивного датчика

Работа индуктивного датчика. Флажок движется вправо, и когда достигает зоны чувствительности датчика, датчик срабатывает.

Читайте так же:
Характеристики отключения автомат выключателей

Кстати, производители датчиков предупреждают, что не рекомендуется подключать непосредственно на выход датчика лампочку накаливания. О причинах я уже писал – ток при включении лампы значительно превышает номинальный.

Характеристики индуктивных датчиков

Чем отличаются датчики.

Почти всё, что сказано ниже, относится не только к индуктивным, но и к оптическим и ёмкостным датчикам.

Конструкция, вид корпуса

Тут два основных варианта – цилиндрический и прямоугольный. Другие корпуса применяются крайне редко. Материал корпуса – металл (различные сплавы) или пластик.

Диаметр цилиндрического датчика

Основные размеры – 12 и 18 мм. Другие диаметры (4, 8, 22, 30 мм) применяются редко.

Чтобы закрепить датчик 18 мм, нужны 2 ключа на 22 или 24 мм.

Расстояние переключения (рабочий зазор)

Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние – от 0 до 2 мм, для датчиков диаметром 12 и 18 мм – до 4 и 8 мм, для крупногабаритных датчиков – до 20…30 мм.

Количество проводов для подключения

Подбираемся к схемотехнике.

2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.

2-проводный датчик. Схема включения

Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением – не играет роли ни подключение нагрузки, ни полярность. Можно вообще не думать, как их подключать. Главное – обеспечить ток.

3-проводные. Наиболее распространены. Есть два провода для питания, и один – для нагрузки. Подробнее расскажу отдельно.

4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод – выбор режима работы или состояния выхода.

Виды выходов датчиков по полярности

У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:

Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.

Транзисторный PNP. Это – PNP датчик. На выходе – транзистор PNP, то есть коммутируется “плюсовой” провод. К “минусу” нагрузка подключена постоянно.

Транзисторный NPN. На выходе – транзистор NPN, то есть коммутируется “минусовой”, или нулевой провод. К “плюсу” нагрузка подключена постоянно.

Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.

Ниже будут даны схемы включения датчиков, на которых будет хорошо видно эти отличия.

Виды датчиков по состоянию выхода (НЗ и НО)

Какой бы ни был датчик, один из основных его параметров – электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).

Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят – нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре, соответственно – NС и NО.

То есть, главное, что надо знать про транзисторные выходы датчиков – то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Контакты датчиков также могут быть с задержкой включения или выключения. Про такие контакты также сказано в статье про приставки выдержки времени ПВЛ. А почему датчики, отвечающие за безопасность, должны быть обязательно с НЗ контактами – см. статью про Цепи безопасности в промышленном оборудовании.

Кстати, если Вам вообще интересно то, о чем я пишу, подписывайтесь на получение новых статей и вступайте в группу в ВК!

Положительная и отрицательная логика работы

Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).

ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.

ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая “1”) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.

ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.

Существуют варианты различных устройств и подключения к ним датчиков, спрашивайте в комментариях, вместе подумаем.

Продолжение статьи – здесь >>>. Во второй части даны реальные схемы и рассмотрено практическое применение различных типов датчиков с транзисторным выходом.

Скачать инструкции и руководства на некоторые типы индуктивных датчиков:

• Autonics_proximity_sensor / Каталог датчиков приближения Autonics, pdf, 1.73 MB, скачан: 1796 раз./

• Omron_E2A / Каталог датчиков приближения Omron, pdf, 1.14 MB, скачан: 2337 раз./

• ТЕКО_Таблица взаимозаменяемости выключателей зарубежных производителей / Чем можно заменить датчики ТЕКО, pdf, 179.92 kB, скачан: 1798 раз./

• Turck_InduktivSens / Датчики фирмы Turck, pdf, 4.13 MB, скачан: 2327 раз./

• pnp npn / Схема включения датчиков по схемам PNP и NPN в программе Splan/ Исходный файл., rar, 2.18 kB, скачан: 3644 раз./

Читайте так же:
Распределительная панель для автоматических выключателей 19

Автоматический выключатель максимальной токовой защиты

С автоматическими сетевыми выключателями — также называемыми переключателями максимальной токовой защиты — почти все имели дело. Они размещены в распределительной коробке в большинстве современных квартир и домов (хотя все еще много квартир с керамическими выкручивающимися пробками-предохранителями). Но так как они относительно недавно начали применяться массово, про них есть немало вопросов и просто пробелов в знаниях как правильно такие предохранители устанавливать. В этой статье вы узнаете что вообще такое предохранитель и что он защищает, как правильно подключить его к сети 220V, какие характеристики имеют стандартные автоматические выключатели и кое-что об их взаимозаменяемости.

Использование автоматических выключателей тока

Такое устройство используется для:

1. Защита кабелей от повреждений, вызванных протекающим электрическим током слишком высокой мощности.
Каждый провод имеет определенное максимальное значение тока который может протекать через него в течение длительного периода времени без риска повреждения. Если это значение превышено, температура провода может увеличиться до опасного уровня (связано с тем, что кабель имеет собственное электрическое сопротивление). Оно мало, но чем больше ток протекает через провод, тем больше энергии отходит на кабель в виде тепла.

Если температура провода останется на некоторое время на слишком высоком уровне, его изоляция начнет плавиться. Автоматический выключатель с правильными параметрами для данного провода защитит его от такой ситуации и своевременно отключит напряжение в цепи. Скорость работы в случае обнаружения так называемой термической перегрузки зависит от количества тока, проходящего через автоматический выключатель, и составляет от 0,2 секунды до 2-х часов.

2. Защита проводов и приборов от воздействия коротких замыканий в электрической цепи. Короткое замыкание или очень высокий ток может протекать во внутренней электрической проводке, когда сопротивление между фазным проводом и нейтральным проводником очень мало (например, когда замкнуты нейтральный и фазовый проводники).
Если обнаружено короткое замыкание, выключатель максимального тока должен срабатывать очень быстро, то есть менее чем за 30 миллисекунд.

Чего не может автоматический выключатель: Переключатель максимального тока не используется для защиты человека от поражения электрическим током. Интенсивность токов при которых установочный выключатель сработает даже за долю секунды, абсолютно смертельна для человека. Для защиты от удара 220 вольт используется специальное устройство с остаточным током.

Конструкция токозащитного выключателя

На приведенных выше рисунках показан автоматический выключатель тока с нескольких ракурсов:

Автоматический выключатель максимальной токовой защиты

  1. Переключатель имеет два винтовых соединителя в верхней и нижней части для прикручивания провода питания с одной стороны, и выхода на потребители тока (розетки, лампы). В центральной части находится подвижный элемент (переключатель), который может быть установлен в двух положениях. На этом чертеже автоматический выключатель находится в положении «OFF», то есть питание не подключено к потребителям. Под переключателем находится серия меток, определяющих его параметры.
  2. Это фото отличается от первого только положением переключателя. Обратите внимание, что положение OFF отмечено зеленым, а положение ON — красным. Казалось бы всё должно быть наоборот. Однако оно имеет свое оправдание. Зеленый означает отсутствие напряжения на выходе, то есть безопасное состояние для монтажа, а красный означает: в розетке есть напряжение, поэтому ничего не трогайте.
  3. Взгляните на винтовое соединение. Затягивая винт, металлический элемент снизу поднимается вверх, надавливая кабель на верхнюю часть отверстия.
  4. С задней стороны переключателя видно паз, характерный для элементов закрепленных на DIN-рейке (TS35). Пластмассовый белый элемент с небольшим отверстием в нижней части представляет собой защелку, которая удерживает переключатель на DIN-рейке. Чтобы снять переключатель с рейки, вставьте небольшую плоскую отвертку в отверстие и вытащите ее.

Так автоматический токовый выключатель выглядит снаружи. А что у него внутри? Внутри коммутатора есть два так называемых триггера (реле):

  • Электромагнитный — он отвечает за работу автоматического выключения в случае короткого замыкания в электрической цепи. Это мгновенный триггер.
  • Тепловой — отвечает за работу выключателя в случае длительного превышения номинального тока автоматического реле. Скорость его срабатывания зависит от того насколько превышен ток.

Если вас интересуют элементы внутри переключателя, посмотрите на рисунок ниже.

Автоматический выключатель максимальной токовой защиты

  1. Рычажок. Производит включение и выключение подачи тока на клеммы.
  2. Винтовые клеммы. Необходимы для подвода и закрепления контактов, подводимых к автомату.
  3. Подвижный контакт. Подпружинен, необходим для быстрого расцепления контактов.
  4. Неподвижный контакт. Осуществляет коммутацию цепи с подвижным контактом.
  5. Биметаллическая пластина. При превышении допустимого значения пластина нагревается, изгибается и приводит в действие механизм расцепления.
  6. Регулировочный винт. Служит для настройки тока срабатывания.
  7. Катушка. Подвижный сердечник, который также приводит в действие механизм расцепления.
  8. Дугогасительная решетка. Предотвращает возникновение электрической дуги при расцеплении контактов.
  9. Защелка. Фиксирует корпус на DIN-рейке.

Схема подключения автоматического выключателя

Подключение реле максимального тока показано на принципиальной схеме.

Автоматический выключатель максимальной токовой защиты

Подключают к автоматическому выключателю фазные проводники. С одной стороны — источник питания (вход на щиток от электростанции или общей домовой сети), а с другой стороны — отход тока в квартиру. Переключатель, соединяющий / отсоединяющий фазный проводник, управляет электрическим потенциалом приборов, подключенных к автоматическому выключателю.

Вышеприведенная схема является самым простым решением. Одна розетка для одного коммутатора. Как правило розеток (или другие электрических компонентов) которые защищены одним токовым реле намного больше. Как выглядит соединение тогда?

Автоматический выключатель максимальной токовой защиты

Провода определенного типа соединены друг с другом в розетке или с другим элементом, например, в лампе. Таким образом введя фазу получаем электрический потенциал во всех розетках.

Читайте так же:
Сопротивление изоляции подвижных частей выключателя

Подключение максимальной токовой защиты

Схемы схемами, но в конце концов нужно брать отвертку и присоединять провода к электрощитку. Начнем с удаления изоляции с конца провода. Удаленная изоляция должна быть достаточной длины. Слишком короткая изоляция — это, во-первых, меньшая контактная поверхность выключателя с кабелем, а во-вторых, риск завинчивания крепления на изоляцию, вместо оголенного провода. Правильная длина кончика: 10-15 мм.

Автоматический выключатель максимальной токовой защиты

Во-вторых, нужно вставить провод куда следует. Кабель должен находиться между подвижным зажимом и верхней частью отверстия. Проблема при всей своей простоте может быть реальной. Чаще всего смотрят на переключатель спереди, поэтому не могут видеть клеммы-терминалы и нетрудно сделать ошибку.

Автоматический выключатель максимальной токовой защиты

Клеммы с обеих сторон выключателя функционируют одинаково. Подключение двух проводов к автоматическому выключателю возможно при условии, что оба провода имеют одинаковое поперечное сечение. Попытка подключения проводов с различными поперечными сечениями не рекомендуется.

Автоматический выключатель максимальной токовой защиты

Более тонкий провод во время работы может выскочить из крепления. На приведенных выше рисунках подключены два провода: коричневый 2,5 мм2 и черный 1,5 мм2.

Обозначения и типы выключателей тока

На передней панели выключателя максимальной токовой защиты имеется несколько обозначений, определяющих параметры реле максимального тока:

Автоматический выключатель максимальной токовой защиты

  • C2 — самый важный параметр автоматического выключателя. Первая буква, в данном случае «С», определяет характеристики переключателя, а «2» — номинальный ток. Значение силы тока, конечно, указано в Амперах [A].

Выключатели максимального тока могут быть не только одиночными (1P), но также могут иметь 2, 3 или 4 элемента.

Автоматический выключатель максимальной токовой защиты

Коммутатор для многопозиционных переключателей является общим, то есть возможны только два состояния: все цепи подключенные к автоматическому выключателю включены или все цепи отключены. Это имеет смысл, например, использование трехпозиционного автоматического выключателя для трехфазных устройств, где при обнаружении короткого замыкания или перегрузки на каком-либо однофазном проводнике все устройство будет обесточено.

Характеристики автоматического выключателя

Временная характеристика — графическое представление рабочей скорости срабатывания коммутатора в зависимости от проходящего через него тока. Выключатели максимального тока имеют 4 основные характеристики которые отличаются друг от друга интенсивностью тока, при котором электромагнитное освобождение срабатывает. Эксплуатация блока теплового отключения идентична для каждого типа выключателя максимальной токовой защиты.

Каждая характеристика имеет два токовых порога:

  1. Порог отказа — ниже этого порога триггер отключения не работает. Превышение этого порогового значения может привести к отключению автоматического выключателя.
  2. Порог срабатывания — выше этого порога срабатывание отключающего устройства будет работать на 100%.

Автоматический выключатель максимальной токовой защиты

В чем разница между этими характеристиками? Порог срабатывания электромагнитного отпуска (быстрый):

Характеристика A:

  • порог отказа — 2x номинальный ток автоматического выключателя (In)
  • порог срабатывания — 3-кратный номинальный ток автоматического выключателя (In)

Характеристика B:

  • частота отказа — 3x
  • порог активации — 5x In

Характеристика C:

  • частота отказа — 5x In
  • порог активации — 10x In

Характеристика D:

  • частота отказа — 10x
  • порог активации — 20x In

На графике можно увидеть 4 характеристики. Из приведенных выше данных можно сделать вывод, что автоматический выключатель с характеристикой А будет срабатывать как можно раньше, а автоматический выключатель с характеристикой D — позднее.

При включении, например, дрели, это устройство может на долю секунды потреблять всплеск тока, кратный номинальному току автоматического выключателя (так называемый пусковой ток). Предположим, что у нас есть автоматический выключатель с номинальным током 10 А, а в момент запуска дрель потребляет 35 А. Эта интенсивность в 3,5 раза превышает номинальный ток автоматического выключателя, то есть:

  • переключатель с функцией A сработает наверняка
  • переключатель с функцией B может сработать
  • переключатели C и D не будут выключаться

А что, если в системе появляется короткое замыкание, интенсивность которого может легко превысить 20-кратный номинальный ток автоматического выключателя? В случае короткого замыкания не существует разного времени задержки для выключателей которые отличаются только их характеристиками. Что это означает на практике? Если в вашем доме имеется выключатель максимального тока B16 (характеристика B, номинальный ток 16 A), а в распределительной коробке поставщика энергии, например C20, в случае короткого замыкания в цепи невозможно определить будет ли срабатывать B16 или C20, или оба одновременно.

Характеристики выключателя выбираются, среди прочих из-за наличия устройств, которые потребляют большое количество энергии при запуске. Автоматические выключатели с характеристиками А используются для чувствительных электронных устройств (требуется быстрый отклик). С другой стороны, автоматические выключатели с характеристиками C и D используются там, где к цепи подключены двигатели, которые при запуске набирают большой ток.

Подведём итоги

В зависимости от тока протекающего в цепи, защитный коммутатор может сработать в течение секунды, но он также может работать до срабатывания в течение нескольких минут или даже часов.

Когда вы посмотрите на характеристики то заметите, чтоб автоматический выключатель сработал, его номинальный ток должен быть превышен на 13%. Однако, если нужно быть уверенным в активации автоматического выключателя, ток должен иметь значение минимум на 45% выше номинального.

Легко подсчитать, что если по умолчанию через выключатель B10, используемый в цепях освещения, будет течь 11A, автоматический выключатель не сработает никогда. И для того чтобы быть уверенным в его отключении, через него должен пройти ток не менее 14,5A.

Автоматический выключатель максимальной токовой защиты

Уверены что теперь вы поняли работу автоматического выключателя, который ставят в щитки на замену старым пробкам. Если что-то осталось не ясным — спросите в комментариях ниже.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector