Sanitaryhygiene.ru

Санитары Гигиены
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Прибор для проверки светодиодной подсветки телевизоров и отдельных светодиодов

Прибор для проверки светодиодной подсветки телевизоров и отдельных светодиодов

Задумался я как-то сделать прибор для проверки светодиодной подсветки в современных телевизорах.
Прибор мне нужен, т.к. занимаюсь ремонтом.
В самом начале моей практики ремонта подсветки использовался обычный мультиметр в режиме прозвонки. Исправные светодиоды слегка засвечивались. Но иногда эту засветку было плохо видно.
Вторая попытка упростить поиск неисправности была реализация источника тока из старой зарядки от мобильника и LM311 в режиме стабилизатора напряжения на 3.3В и источника тока на 300мА. Зачем такие параметры? Потому что светодиоды подсветки питаются таким током. Очень часто в процессе проверки исправные светодиоды в прямом смысле слова ослепляли, т.к. светили в полную силу. Еще одним недостатком данной реализации было то, что нельзя было проверить больше 1 светодиода за один раз. И когда попадались светодиоды на 6В, то они тоже не засвечивались и их приходилось проверять мультиметром в режиме проверки диодов, орентируясь на показания прибора. Сколько раз я видел, что нерабочий светодиод отображается как «почти рабочий» по показаниям мультиметра это не сосчитать.
Как-то на просторах Интернета наткнулся на специальный прибор для проверки светодиодной подсветки. Но его цена меня совсем не радовала даже если его заказывать в Китае. Долгие попытки найти на него схему не увенчались успехом. Еще удручало то, что я ведь понимал, что это просто обычный источник тока. И вот, как-то в очередной раз поиски схемы для этого прибора меня привели к этой схеме
Схема
Рассматривались схемы стабилизатора тока на биполярном транзисторе, на полевом транзисторе, на ОУ. В итоге был выбран биполярный транзистор, т.к. эта схема содержит абсолютный минимум деталей.
Я поставил транзистор C2688. Тот, что был под рукой. Конденсаторы поставил 100мкфх100В, т.к. решил не заморачиваться и взять «с запасом» по напряжению.
Транзистор
Было лень разводить плату и травить, поэтому нашел в коробке кусок макетной платы подходящего размера
Плата
Общий вид прибора
Общий вид
Вид сверху
Сверху

В качестве тестовых проводов использованы щупы от мультиметра.

Прибор был успешно протестирован на разном количестве светодиодов. Также был тест «в полевых условиях», выявилась еще особенность — зажигать только исправные светодиоды в ленте, и сразу видны неисправные. Не знаю, глюк это был или нет, но так было.

Схема в формате SPlan прикреплена

В планах — подцепить к нему вольтметр чтобы можно было проверять стабилитроны. Сейчас тоже можно, но требуется подключение мультиметра.

Добавлен файл проекта в Протеусе. Симуляция подтверждает, что при напряжении на умножителе 125В напряжение на светодиоде равно его рабочему напряжению.

По результатам обсуждений и последующих экспериментов с новыми светодиодами выявлено, что

Инструкция по ремонту светодиодной подсветки телевизора BBK 32LEM-1056/TS2C

Одна из типовых неисправностей современных LED телевизоров — перегорание свотодиодов подсветки. Проявляется она очень просто — звук есть, изображения — нет, просто тёмный экран. При этом если вы хорошо затемните помещение и будете подсвечивать экран фонариком, например, от телефона, то можно заметить, что изображение на экране на самом деле тоже есть, но оно очень и очень тёмное. Если в вашем случае всё именно так, как я описал, — с вероятностью 90% проблема состоит именно в перегорании светодиодов подсветки. Второй вариант — неисправность питания этой самой подсветки, но это легко диагностируется и случается на порядок реже (ниже я раскажу как это опознать). Именно такие симптомы проявились в телевизоре моей мамы, по результатам домашнего ремонта которого и была написана статья.

Стоимость ремонта в сервисе может доходить до трети стоимости самого телевизора, а время ожидания составит те же 1-2 недели, которые понадобятся и вам для получения заказанных по интернету запчастей (просто мастерская их тоже скорее всего по интернету закажет). Всё, что вам понадобится — эта статья, мультиметр, прямые руки, ну и кое-что по мелочи, типа отсека для батареек и резистора небольшого номинала.

    Кладём телевизор экраном вниз на плоскую поверхность (лучше мягкую, чтобы не повредить экран, например на диван), берём крестовую отвёртку, откручиваем 4 шурупа и снимаем ножки.

Теперь у нас есть возможность проверить работоспособность схемы питания светодиодной подсветки (такая схема называется светодиодным драйвером). Как известно, светодиоды нужно питать постоянным током, — это главное условие их нормальной работы, поэтому принципиально работа светодиодного драйвера со специальным контроллером в телевизоре ничем не отличается от работы простейшего драйвера на операционном усилителе. И тот и другой измеряют проходящий через светодиоды ток и регулируют своё выходное напряжение таким образом, чтобы этот ток был строго заданной величины. Если ток меньше заданного — выходное напряжение драйвера увеличивается, если больше — выходное напряжение падает.

Читайте так же:
Подключение сетевого кабеля у сетевой розетке

При перегорании одного из светодиодов возникает обрыв и ток становится равным нулю. Соответственно, драйвер будет стремиться насколько это возможно увеличить своё выходное напряжение. В рассматриваемом телевизоре BBK 32LEM-1056-TS2C светодиодная подсветка состоит из двух линеек по 7 светодиодов, все они включёны последовательно, а падение напряжения на одном светодиоде составляет порядка 6,4-6,6 Вольт. Таким образом, если наш драйвер светодиодов работает, то на его выходе мы должны увидеть порядка 2*7*6,4=89,6 Вольт. Проверить это можно измерив мультиметром напряжение на выходе драйвера. Включаем телек со снятой крышкой, жмём сбоку кнопку power и очень акуратно измеряем напругу в указанном на фотографии месте (во избежании поражения электрическим током ничего не задеваем, там присутствует высокое напряжение).

В моём случае получилось 90 вольт. Ок, — драйвер работает и нужно искать перегоревшие светодиоды. Выключаем телевизор из сети и продолжаем его разбирать.

Светодиодный свет для чайников

» означает, что напряжение должно быть переменным. В автомобильной бортовой сети, например, напряжение постоянное. И у пальчиковой батарейки оно постоянное. Разница простая — у постоянного напряжения есть плюс и минус — у переменного нет. А почему нет ? Все очень просто. В сети с переменным напряжением плюс и минус постоянно меняются местами. Один и тот же контакт — то плюс, то минус. Как часто ? А вот для этого и существует еще одно значение — 50 Гц. Что такое Гц ? Это одно колебание в секунду. То есть в нашей домашней сети плюс меняется с минусом пятьдесят раз в секунду. А теперь — какая практическая польза от этих знаний, какое это имеет оношение к светодиоду? Давайте разбираться. Предположим, у вас в руках лампочка на 220 вольт 100 ватт. Если вы ее включите в электрическую сеть — она засветится на все свои сто ватт. А если нам не нужны эти 100 ватт ? А нужно, скажем, 50 Вт ? В этом нам поможет ДИОД.

Если разбить слово «светодиод» на составляющие, то мы получим «свето» и «диод«. То есть это обычный диод, который еще и светится. Диод — это такой прибор, который лучше всего сравнить, например, с клапаном или ниппелем в автоколесе. Туда вы можете закачать воздух, а обратно — ниппель не пускает. Обычный диод выглядит как черный бочонок с двумя выводами — плюсом и минусом. Вот его мы и можем использовать для пралампа накаливания 15 Втктических опытов, которые многим помогают закрепить материал. Конечно, опасно начинать опыты сразу с 220 вольтами, но при должной осторожности ничего страшного не произойдет. Тем не менее, все опыты вы проводите на свой страх и риск 🙂 Нам понадобится лампочка от холодильника на 220в, 15 Вт. Для нее нужно найти подходящий патрон и вывести из него два провода. Затем нам понадобится любой диосхематичное изображение диодад, который можно добыть, например, из любого неисправного телевизора или магнитофона. Чем больше он будет размером — тем лучше. Совсем маленькие брать не надо — 220 вольт все-таки. Возле него обычно есть обозначение в виде треугольника.
Затем нам понадобится сетевой шнур с вилкой, некоторое количество проводов и паяльник. Для начала просто подсоедините лампочку к сети и запомните — как она светится. Затем отсоедините и соберите цепь по схеме слева. Не забудьте тщательно заизолировать изолентой все соединения. Включайте в розетку. Как видите, лампочка светит гораздо хуже. Это и неудивительно — она теперь получает только половину нужного ей напряжения — вторую диод не пускает. Если опыт у вас удался, а диод достаточно большой — вы теперь можете сделать любую свою лампочку пратически вечной. Например, светит у вас в коридоре лампа на 50 ватт и постоянно перегорает. Возьмите 100 ваттную, включите ее через диод — светить она будет примерно как 50 ватт, зато не будет перегорать. Есть, правда, один нюанс — диод должен быть расчитан на напряжение 350-400 вольт и ток не менее ампера. Лучше всего купить такой в магазине радиодеталей.

Читайте так же:
Ток в новом свете 1

Ну, раз мы разобрались с тем, что такое диод, есть смысл перейти к интересующей нас теме — светодиоду. У светодиода, как теперь понятно, тоже есть плюс и минус. То есть для его работы нужен источник постоянного напряжения — аккумулятор, батарейка, блок питания. На блоке питания должно быть указано, что он выдает постоянное напряжение (DC). Обычно на крышке блока есть наклейка такого содержания.
Input —

220V 50HZ,
output — 12v, 0,5 A DC
Это значит, что такой блок может выдать постоянное напряжение 12 вольт и ток 0,5 ампера.
Отметим, что зарядное устройство для сотовых телефонов — это тоже блок питания. Оно обычно имеет параметры 5-6 вольт, 0,2-0,5 А. Зачастую его очень удобно использовать для питания светодиодов, потому что зарядное устройство стабилизирует ток. Но об этом позже, в следующих статьях.
Нам важны два параметра — рабочее напряжение светодиода и ток. Рабочее напряжение светодиода называют еще «падением напряжения». В сущности, этот термин обозначает, что после светодиода напряжение в цепи будет меньше на размер этого самого падения. То есть если мы подадим питание на светодиод, у которого падение напряжения 3 вольта, то он эти три вольта сьест, и включенному после него в эту же цепь прибору достанется на 3 вольта меньше. Но самое главное, что нужно усвоить — светодиоду важен ток, а не напряжение. Напряжения он возьмет столько, сколько ему нужно, а вот тока — сколько дадите. То есть если ваш источник питания может выдать 10 ампер — светодиод будет брать ток, пока не сгорит. Логика тут простая — подключенный светодиод потребляет ток и начинает греться. Чем сильнее он греется — тем больше тока через него может пройти — он же от нагрева расширяется. Вместе с током растет падение напряжения на диоде. И так пока не сгорит совсем — ток-то никто не ограничил. А делать это надо обязательно, используя ограничивающий элемент.
Отметим, что если источник питания имеет выходное напряжение, равное рабочему напряжению светодиода — ток ограничивать необязательно. То есть если у вас есть, например, белый светодиод и аккумулятор на 3,6 вольт от сотового телефона — можете прямо к этому аккумулятору и подключить — ничего светодиоду не будет. Он и рад бы побольше тока хапнуть — а напряжения не хватает. Так что аккумулятор от сотового на 3,6 в — идеальный источник питания для экспериментов с белыми и синими светодиодами. Почему только с ними — об этом в других статьях.
В общем, последовательно со светодиодом нам нужно поставить этакий кран и закрутить его на нужное нам значение. В роли такого крана могут выступать разные приборы. Самый простой из них — резистор. Как правильно ограничить ток светодиода говорится в моей статье о подключении светодиодов в авто. А мы пойдем дальше. Правда, если вам неинтересно, как работает светодиод, а всего лишь хочется узнать о его практическом применении — лучше перейти в конец страницы и выбрать другую часть «Для чайников». Но если вы твердо намерены узнать о твердотельных источниках света «с азов» — продолжим знакомство 😉

Оптические аспекты использования светодиодов

«Существует достаточно света для тех, кто хочет видеть, и достаточно мрака для тех, кто не хочет»

Предположим, мы научились подключать светодиод и ограничивать его ток. Встает вопрос — а насколько сильно он светит ? Тут нам придется немного окунуться в оптику.
В числе свойств светодиодов, особенно мощных, часто указывается тип распределения света. Обычно это так называмая Ламбертовсветодиод Ламбертская диаграмма. Дальше мы ее и будем рассматривать как самую распостраненную. Что этот термин обозначает ? «Ламбертовский» светодиод светит во все стороны одинаково, независимо от направления. Если бы светодиод был шариком, он бы во все стороны светил одинаково — вот суть диаграммы Ламберта. Чтобы было понятно- солнце — это ламбертиановский источник. Стандартная конструкция светодиода — кристалл, тонкая пластинка, которая светится. Посмотрите в прозрачное окошко светодиода — и вы этот кристалл увидите. К нему идут тоненькие проволочки контактов. Если подключить воображение, то можно представить свет, идущий от светодиода, как сферообразное облако, висящее над ним. Свет — это же маленькие частички, называемые фотонами. Значит, над светодиодом висит шарик, наполненный фотонами. И чем больше света испускает светодиод — тем больше шарик, тем дальше летят фотончики, толкая и вытесняя друг друга. Больше всего их летит вверх перпендикулярно плоскости кристалла, поэтому максимальная сила света светодиодов — 90 градусов относительно горизонтальной оси. Надеюсь, теперь вам стали более понятны диаграммы, которые приводят производители светодиодов 🙂 Чтобы стали совсем уж понятны — давайте рассмотрим пример.
Примем, что есть светодиод, вверху которого висит излучаемая им световая сфера диаметром 1 метр (хор-роший светодиод ! :)).
Нижняя шкала — это расстояние до верхушки этого метра, верхняя — градус излучения. В соответствии с этой диаграммой больше всего фотонов — на оси с градусом 0. Чем дальше отклонение от оси и чем больше расстояние от кристалла — тем меньше плотность фотонов. Нужно также не забывать, что свет — это волна, не зря же для характеристик указывают длину волны. Соответственно, нашу световую сферу можно представить как электромагнитное поле с определенной плотностью. Но это уже дебри — пойдем дальше 🙂

Читайте так же:
Схема лампы освещения с двумя выключателями

Угол половинной яркости

угол половинной яркости светодиода

Производитель обычно указывает такой параметр, как двойной угол половинной яркости. Что означает этот термин ? Как мы выяснили, максимум света светодиод дает в центре, то есть угол равен нулю. Соответственно, чем дальше от центра, тем меньше света. Угол половинной яркости — это когда на «0» градусов светодиод дает 100 условных единиц света, а, например, на 30 градусах (относительно оси «0») — 50. На рисунке I — сила света, Imax — максимальная сила света. ImaxCos — половина силы света. Почему «двойной» — умножаем градусы на два, светодиод же симметрично светит. В итоге мы получаем симпатичный равнобедренный треугольник света. За пределами этого треугольника тоже свет есть, но точка отсчета для характеристики светодиода — это половинный угол.

Кандела

Особенности конструкции индикаторных 5 мм светодиодов

Как уже говорилось выше, светодиод — это излучающий свет кристалл. Рассмотрим конструкцию светодиода в 5 мм пластиковом корпусе. При внимательном рассмотрении мы обнаруживаем две важных вещи — линзу и рефлектор. В рефлектор устройство светодиодапомещается кристалл светодиода. Этот рефлектор и задает первоначальный угол рассеивания. Затем свет проходит через корпус из эпоксидной смолы. Доходит до линзы — и тут начинает рассеиваться по сторонам на угол, зависящий от конструкции линзы. На практике — от 5 до диаграмма светодиода160 градусов. Для обозначения силы света таких светодиодов как раз и используется кандела. Светодиоды с направленным свечением излучают свет в некотором телесном угле. Чтобы понять, что такое телесный угол, достаточно представить следующую картину. Вы берете фонарик, включаете и помещаете его в пожарное ведро в самый низ, затем закрываете крышкой. Свет внутри, соответственно, имеет вид объемного конуса по форме нашего ведра. Вот этот конус, ограниченный крышкой — и есть телесный угол. Попробую объяснить смысл распределения света попроще. Допустим, сила света нашего фонаря — 1 кандела, то есть 1000 милликандел(чтобы было более образно, можно считать милликанделы фотонами :)) Если и дальше идти по аналогии, у нас есть полное ведро милликандел. Объем ведра при желании можно вычислить — добро пожаловать в геометрию 🙂 Соответственно, если мы возьмем ведро в два раза больше — милликанделы равномерно по нему распределятся, то есть больше их не станет, просто снизится плотность. Поэтому не гонитесь за канделами, когда выбираете светодиод — чем шире его угол, тем меньше кандел — у одного и того же. Во всех этих объяснения можно найти ответ на сакральный вопрос — сколько надо светодиодов, чтобы заменить стоваттную лампочку. Об этом — далее.

Особенности конструкции мощных светодиодов

Люмен

светодиод для чайников

Люкс — это соотношение количества люмен и освещаемой площади. 1 люкс — это 1 люмен на квадратный метр. Допустим, у нас есть квадратная поверхность площадью один метр. Вся она равномерно освещена лампочкой, расположенной на некотором расстоянии отвесно сверху . Для этой лампочки производитель заявил освещенность 100 люкс. Берем прибор, называемый люксметр и померяем в любой точке нашего квадрата, мы должны получить 100 люкс. Если это так — производитель нас не обманул. Это касается источника света, который во все стороны светит одинаково (ламбертиановский источник ). Но светодиод наибольшую силу света имеет на оси, перпендикулярной плоскости кристалла. Иными словами, подвесив светодиод на потолок и померяв люксметром, мы увидим, что чем дальше от оси, тем меньше показания прибора. Все вы наверняка сталкивались с точечными лампами накаливания — это так называемые «зеркалки». Задняя часть колбы у этих ламп покрыта зеркальным составом, и светят они только вниз. Вот вам и аналог.

Читайте так же:
Установка выключателя света schneider

Светодиоды – как работает, полярность, расчет резистора

Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме. Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы. В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.

Устройство светодиода

Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

Устройство светодиодов

Светодиод состоит из нескольких частей:

  • анод, по которому подается положительная полуволна на кристалл;
  • катод, по которому подается отрицательная полуволна на кристалл;
  • отражатель;
  • кристалл полупроводника;
  • рассеиватель.

Эти элементы есть в любом светодиоде, вне зависимости от его модели.

Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.

Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.

Цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.

Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.

RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.

Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны.

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия:

  • ширина запрещенной зоны должна быть близка к энергии кванта света;
  • полупроводниковый кристалл должен иметь минимум дефектов.

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды. Осветительные приборы используются для создания яркого освещения в помещении.

Читайте так же:
Расчет токов в экране кабеля

По типу исполнения выделяют:

Dip светодиоды

    Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света.

  • В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.

Светодиоды могут быть:

  • мигающими – используются для привлечения внимания;
  • многоцветными мигающими;
  • трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
  • RGB;
  • монохромными.

Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.

Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К).

По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.

Полярность светодиодов

Полярность светодиодов

При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света. Полярность – это способность пропускать электрический ток в одном направлении.

Полярность моно определить несколькими способами:

  • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.
  • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.
  • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.
  • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.

Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.

Расчет сопротивления для светодиода

Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор. Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока. По полученному значению и подбирается мощность резистора.

Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.

Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.

Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.

Когда нужно использовать токоограничивающий резистор:

  • когда вопрос эффективности схемы не является основным – например, индикация;
  • лабораторные исследования.

В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector