Sanitaryhygiene.ru

Санитары Гигиены
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Параллельное и последовательное соединение проводников

Параллельное и последовательное соединение проводников

Ток в электроцепи проходит по проводникам от источника напряжения к нагрузке, то есть к лампам, приборам. В большинстве случаев в качестве проводника используются медные провода. В цепи может быть предусмотрено несколько элементов с разными сопротивлениями. В схеме приборов проводники могут быть соединены параллельно или последовательно, также могут быть смешанные типы.

mednie provoda

Элемент схемы с сопротивлением называется резистором, напряжение данного элемента является разницей потенциалов между концами резистора. Параллельное и последовательное электрическое соединение проводников характеризуется единым принципом функционирования, согласно которому ток протекает от плюса к минусу, соответственно потенциал уменьшается. На электросхемах сопротивление проводки берется за 0, поскольку оно ничтожно низкое.

Параллельное соединение предполагает, что элементы цепы подсоединены к источнику параллельно и включаются одновременно. Последовательное соединение означает, что проводники сопротивления подключаются в строгой последовательности друг за другом.

При просчете используется метод идеализации, что существенно упрощает понимание. Фактически в электрических цепях потенциал постепенно снижается в процессе перемещения по проводке и элементам, которые входят в параллельное или последовательное соединение.

Последовательное соединение проводников

Схема последовательного соединения подразумевает, что они включаются в определенной последовательности один за другим. Причем сила тока во всех из них равна. Данные элементы создают на участке суммарное напряжение. Заряды не накапливаются в узлах электроцепи, поскольку в противном случае наблюдалось бы изменение напряжения и силы тока. При постоянном напряжении ток определяется значением сопротивления цепи, поэтому при последовательной схеме сопротивление меняется в случае изменения одной нагрузки.

posledovatelnoe soedinenie

Недостатком такой схемы является тот факт, что в случае выхода из строя одного элемента остальные также утрачивают возможность функционировать, поскольку цепь разрывается. Примером может служить гирлянда, которая не работает в случае перегорания одной лампочки. Это является ключевым отличием от параллельного соединения, в котором элементы могут функционировать по отдельности.

Последовательная схема предполагает, что по причине одноуровневого подключения проводников их сопротивление в любой точки сети равно. Общее сопротивление равняется сумме уменьшения напряжений отдельных элементов сети.

При данном типе соединения начало одного проводника подсоединяется к концу другого. Ключевая особенность соединения состоит в том, что все проводники находятся на одном проводе без разветвлений, и через каждый из них протекает один электроток. Однако общее напряжение равно сумме напряжений на каждом. Также можно рассмотреть соединение с другой точки зрения – все проводники заменяются одним эквивалентным резистором, и ток на нем совпадает с общим током, который проходит через все резисторы. Эквивалентное совокупное напряжение является суммой значений напряжения по каждому резистору. Так проявляется разность потенциалов на резисторе.

Использование последовательного подключения целесообразно, когда требуется специально включать и выключать определенное устройство. К примеру, электрозвонок может звенеть только в момент, когда присутствует соединение с источником напряжения и кнопкой. Первое правило гласит, что если тока нет хотя бы на одном из элементов цепи, то и на остальных его не будет. Соответственно при наличии тока в одном проводнике он есть и в остальных. Другим примером может служить фонарик на батарейках, который светит только при наличии батарейки, исправной лампочки и нажатой кнопки.

В некоторых случаях последовательная схема нецелесообразна. В квартире, где система освещения состоит из множества светильников, бра, люстр, не стоит организовывать схему такого типа, поскольку нет необходимости включать и выключать освещение во всех комнатах одновременно. С этой целью лучше использовать параллельное соединение, чтобы иметь возможность включения света в отдельно взятых комнатах.

Параллельное соединение проводников

В параллельной схеме проводники представляют собой набор резисторов, одни концы которых собираются в один узел, а другие – во второй узел. Предполагается, что напряжение в параллельном типе соединения одинаковое на всех участках цепи. Параллельные участки электроцепи носят название ветвей и проходят между двумя соединительными узлами, на них имеется одинаковое напряжение. Такое напряжение равно значению на каждом проводнике. Сумма показателей, обратных сопротивлениям ветвей, является обратной и по отношению к сопротивлению отдельного участка цепи параллельной схемы.

Читайте так же:
Проходной выключатель с двумя клавишами с одной лампой

paralelnoe soedinenie

При параллельном и последовательном соединениях отличается система расчета сопротивлений отдельных проводников. В случае параллельной схемы ток уходит по ветвям, что способствует повышению проводимости цепи и уменьшает совокупное сопротивление. При параллельном подключении нескольких резисторов с аналогичными значениями совокупное сопротивление такой электроцепи будет меньше одного резистора число раз, равное числу резисторов в схеме.

В каждой ветви предусмотрено по одному резистору, и электроток при достижении точки разветвления делится и расходится к каждому резистору, его итоговое значение равно сумме токов на всех сопротивлениях. Все резисторы заменяются одним эквивалентным резистором. Применяя закон Ома, становится понятным значение сопротивления – при параллельной схеме суммируются значения, обратные сопротивлениям на резисторах.

При данной схеме значение тока обратно пропорционально значению сопротивления. Токи в резисторах не взаимосвязаны, поэтому при отключении одного из них это никоим образом не отразится на остальных. По этой причине такая схема используется во множестве устройств.

Параллельное и последовательное подключение ТЭНов

Данная задача часто возникает в условиях, когда к одному источнику питания нужно подсоединить сразу несколько единиц нагревателя. Параллельным методом можно подключить неограниченное число нагревательных элементов, а вот последовательным в основном подключают лишь два нагревательных элемента. Создать надежное подключение электронагревателей последовательным методом задача довольно-таки непростая. При последовательном подключении есть такая особенность, что выход из строя одного нагревательного элемента приведет к остановке работы всей цепочки. А вот в случае параллельного подключения поломка отдельного нагревателя не повлияет на работу остальных элементов нагрева.

Параллельное и последовательное подключение ТЭНов

В основном для подключения необходимо наличие двух ТЭНов. В случае их соединения в последовательном порядке напряжение каждого отдельного нагревателя должно равняться половине общедоступного напряжения. К примеру, два трубчатых нагревателя рассчитанных на 240 Вольт подключаются к питанию 480 Вольт. При этом каждый нагреватель должен обладать одинаковой мощностью. В случае разной мощности и напряжения нагревательные устройства общее напряжение будут получать не в равном количестве. В случае подключения двух нагревателей методом параллельного соединения, напряжение каждого из нагревателей должно равняться напряжению питания.

Ниже предложено несколько расчетов подключения трубчатых электронагревателей

Сила тока (Ампер)

Представим несколько нагревателей с одинаковыми характеристиками, которые будут подключены параллельно или последовательно по разным схемам соединения. В расчётах нам нужно будет учитывать следующие характеристики:

R = полное сопротивление

P = общий показатель мощности

U и I соответственно напряжение и сила ток

Параллельное соединение

Число нагревателей при этом типе соединения может равняться от 2 и более единиц греющих элементов. Показатель общего сопротивления в таком случае будет равен:

R = r / 2 либо R = r / 3 либо R = r / x, где r — сопротивление одного ТЭНа.

Общая мощность будет определяться по следующей формуле:

P = 2*p либо P = 3*.p либо P = x*p, где р – мощность одного элемента нагрева

Два нагревательных элемента с параллельным подключением рассчитанных на 1000 Вт 230 В и работающих от 230В, способны генерировать 2000 Вт при 230 В с R = 26,45 Ом

Три нагревателя с параллельным соединением с показателями на 1000 Вт 230 В, работающие от 230 В, генерируют 3000 Вт при 230 В с R = 17,63 Ом и

Последовательное подключение трубчатых электронагревателей

По аналогии с предыдущим методом берем 2, 3 или более одинаковых электронагревателей. Каждый из нагревателей обладает сопротивлением r и мощностью р. При последовательном подключении складываем их значения и вычисляем:

R = 2*r либо R = 3*r либо R = x*r

P = p / 2 либо P = p / 3

Два электронагревателя с последовательным подключением обладающие мощностью 1000 Вт 230 В, работают от 230 В, способны генерировать 500 Вт при 230 В с R = 105,87 Ом (уровень мощности, создаваемый нагревателями, в 4 раза меньше).

Читайте так же:
Сила тока для светодиодной лампы

Подключение нагревателей к трехфазной сети

Соединение по схеме «треугольник»

Номинальное напряжение каждого из нагревателей будет идентичным напряжению между фазами при соединении треугольником.

Соединение по типу «звезда»

Номинальное напряжение нагревателей в данном случае будет равно напряжению между фазами трехфазной проводки, разделённому на корень из 3 или 1,732

Три нагревателя с показателем мощности1000 Вт 230 В, которые подключены к трехфазной сети 400 В, способны генерировать 3000 Вт.

Три нагревателя с показателем мощности 1000 Вт 400 В, подсоединенные к трехфазному питанию 400 В, вырабатывают 1000 Вт.

Более подробно рассмотреть подключение нагревателей к трехфазной сети, вы можете на сайте «ТЭН24» в разделе статьи — подключение ТЭН по типу «звезда» и «треугольник».

Выводы

При выборе параллельного подключения напряжение каждого нагревателя будет одинаковым. Показатель общей мощности будет равен сумме общей мощности всех нагревательных элементов. При этом поломка одного из нагревателей не приведет к выходу из строя всей цели нагревательных элементов.

В случае последовательного подключения ТЭН общий показатель сопротивления будет состоять из общих значений сопротивления каждого греющего элемента. Напряжение на каждом отдельном нагревателе будет рассчитываться на основе следующей формулы: Uобщ/число нагревательных элементов (для одинаковых ТЭН). В соответствии с этим общий показатель мощности снизится на столько, сколько нагревателей есть всего в системе.

Некоторые нагревательные устройства не способны выполнять свою работу надежно при одинаковом напряжении. Это зависит от физических размеров нагревательных элементов. В связи с этим желательно подбирать нагревательные элементы, у которых будет оптимальные размеры спирали. В данном случае необходимость последовательного подключения отпадет. Важно понимать, что нагреватели с параллельным подключением должны иметь одинаковое напряжение. Устройства с параллельным подключением в свою очередь будут одинаковый ток. Подключать ТЭНы в последовательном порядке целесообразно только тогда, когда имеется два нагревательных элемента с одинаковой мощностью и напряжением. В данном случае их сумма мощности будет ниже. В основном трубчатые элементы нагрева соединяются в параллельном порядке.

Если после прочтения данной статьи у вас остались вопросы по подключению ТЭН вы можете в любое время обратиться к нашим консультантам по обратной связи сайта или воспользовавшись предложенной контактной информацией. «ТЭН24» с удовольствием подскажет, как подключать ТЭНы и подберет самый подходящий вариант нагревателей для решения ваших задач. У нас вы можете выбрать стандартные устройства нагрева различного направления работы и комплектующие к ним. При необходимости мы можем предложить нагреватели индивидуальной сборки с максимально подходящими характеристиками под ваше оборудование.

Трубчатые нагреватели — самые универсальные из всех электронагревательных элементов. Им можно придать практически любую конфигурацию. Трубчатые нагревательные элементы обеспечивают исключительную теплопередачу за счет теплопроводности, конвекции и излучения для нагрева жидкостей, воздуха, газов и поверхностей.

Типовые установки и использование трубчатых нагревателей

В свободном воздухе

Для таких применений, как духовки и сушильные шкафы, трубчатые нагревательные элементы представляют собой компактные надежные источники тепла. Их формуемость позволяет размещать их вокруг других компонентов печи и рабочих выступов, концентрируя тепло в любой точке.

В циркулирующем воздухе

Компрессионные фитинги, заводские фитинги или кронштейны служат для крепления трубчатого элемента в воздуховоде или камере нагрева воздуха.

В резервуары с жидкостями

Трубчатые нагреватели могут быть установлены через боковую стенку резервуара с помощью компрессионных фитингов или заводских фитингов.

Передача тепла металлическим частям

Доступные диаметры, длины, номинальные характеристики, удельная мощность, поперечное сечение и максимальные температуры обеспечивают решение для данной работы.

Погружение в жидкостной нагрев

Обычно воду и водные растворы можно нагревать до любой желаемой температуры. Если жидкость находится под давлением, температура не должна превышать максимальную температуру оболочки элемента.

Читайте так же:
Питание лампочки через один провод

Масляное отопление

Элементы стальной оболочки могут использоваться для жидкого топлива, теплоносителя и других растворов, не вызывающих коррозию стальной оболочки.

Воздушное и газовое отопление

Используйте удельную мощность, совместимую с рабочими температурами. Обогреватели, установленные горизонтально, необходимо поддерживать во избежание провисания при высоких температурах.

Правильное расстояние между опорами может варьироваться в зависимости от температуры применения, диаметра элемента и материала оболочки. Обычно достаточно расстояния между опорами от 12 до 18 дюймов.

Если воздух, проходящий через элементы, позволяет использовать более высокие удельные мощности, убедитесь, что воздушный поток распределяется равномерно. Допускается приблизительно 1/8 дюйма на фут длины элемента для расширения и сжатия элементов.

Накладной нагрев

Используйте удельную мощность, совместимую с рабочими температурами. См. Руководство по применению трубчатого нагрева твердых тел, жидкостей, воздуха и газа или используйте кривую G-175S в техническом разделе. Нагреватели должны быть плотно зажаты для обеспечения хорошей теплопередачи, но должны иметь возможность расширяться по мере нагрева. Слишком плотно зажатые нагреватели будут отклоняться от нагреваемой поверхности, что приведет к низкой эффективности нагрева и возможному выходу нагревателя из строя. Обычно лучше сначала затянуть средний зажим, чтобы удерживать элемент. Другие зажимы следует затянуть достаточно, чтобы удерживать, но поверните их на пол-оборота, чтобы обеспечить расширение и сжатие.

В зависимости от характеристик, оболочки и формы электрические трубчатые нагреватели «ТЭН24» используются в различных областях промышленного нагрева (кондуктивный, конвекционный, радиационный), которые требуют рабочих температур до 750 ° C (1382 ° F) для нагрева жидкостей, газов и твердых веществ. Доступны различные диаметры, позволяющие отрегулировать удельную мощность в вашем приложении и спроектировать промышленное отопительное оборудования для обеспечения максимальной производительности и длительного срока службы. Стандартные и изготовленные на заказ клеммные штыри упрощают установку и обслуживание. «ТЭН24» использует высококачественный оксид магния, чтобы обеспечить эффективную передачу тепла от резистивной катушки к теплоносителю, будь то воздух, жидкость или твердое тело. Радиусы изгиба разработаны с тщательной экспертизой, чтобы обеспечить оптимальную производительность при соблюдении «формы и функции» в вашем приложении.

Получите расценки на трубчатый нагреватель сегодня. «ТЭН24» также производит другие решения для промышленного обогрева, такие как инфракрасные обогреватели, погружные обогреватели, циркуляционные обогреватели и многое другое.

Сила тока при последовательном соединении ламп

Задача № 1. Два проводника сопротивлением 200 Ом и 300 Ом соединены параллельно. Определить полное сопротивление участка цепи.

Задача № 2. Два резистора соединены параллельно. Сила тока в первом резисторе 0,5 А, во втором — 1 А. Сопротивление первого резистора 18 Ом. Определите силу тока на всем участке цепи и сопротивление второго резистора.

Задача № 3. Две лампы соединены параллельно. Напряжение на первой лампе 220 В, сила тока в ней 0,5 А. Сила тока в цепи 2,6 А. Определите силу тока во второй лампе и сопротивление каждой лампы.

Задача № 4. Определите показания амперметра и вольтметра, если по проводнику с сопротивлением R1 идёт ток силой 0,1 А. Сопротивлением амперметра и подводящих проводов пренебречь. Считать, что сопротивление вольтметра много больше сопротивлений рассматриваемых проводников.

Задача № 5. В цепи батареи параллельно включены три электрические лампы. Нарисуйте схему включения двух выключателей так, чтобы один управлял двумя лампами одновременно, а другой — одной третьей лампой.

Ответ:

Задача № 6. Лампы и амперметр включены так, как показано на рисунке. Во сколько раз отличаются показания амперметра при разомкнутом и замкнутом ключе? Сопротивления ламп одинаковы. Напряжение поддерживается постоянным.

Задача № 7. Напряжение в сети 120 В. Сопротивление каждой из двух электрических ламп, включенных в эту сеть, равно 240 Ом. Определите силу тока в каждой лампе при последовательном и параллельном их включении.

Задача № 8. Две электрические лампы включены параллельно под напряжение 220 В. Определите силу тока в каждой лампе и в подводящей цепи, если сопротивление одной лампы 1000 Ом, а другой 488 Ом.

Читайте так же:
Стабилизатор тока для светодиодных ламп автомобиля

Задача № 9. В цепь включены две одинаковые лампы. При положении ползунка реостата в точке В амперметр А1 показывает силу тока 0,4 А. Что показывают амперметры А и А2 ? Изменятся ли показания амперметров при передвижении ползунка к точке А?

Задача № 10. ОГЭ В сеть напряжением U = 24 В подключили два последовательно соединённых резистора. При этом сила тока составила I1 = 0,6 А. Когда резисторы подключили параллельно, суммарная сила тока стала равной I2 = 3,2 А. Определить сопротивления резисторов.

Задача № 11. ЕГЭ Миллиамперметр, рассчитанный на измерение тока до IА = 25 мА, имеющий внутреннее сопротивление RA = 10 Ом, необходимо использовать как амперметр для измерения токов до I = 5 А. Какое сопротивление должен иметь шунт?

Краткая теория для решения Задачи на Параллельное соединение проводников.

Задачи на Параллельное соединение проводников

Это конспект по теме «ЗАДАЧИ на Параллельное соединение проводников». Выберите дальнейшие действия:

Последовательное и параллельное соединение проводников — формулы и примеры расчетов

Параллельное и последовательное соединение проводников

При данном типе подключения проводники монтируются один за другим. В результате конец первого является началом второго и т. д. Особенность такого соединения заключается в отсутствии разветвлений. Со свойствами созданной этим способом электроцепи можно познакомиться на примере схемы с двумя потребителями, выключателем и источником питания. Последовательное подсоединение проводников обладает несколькими особенностями:

  • сила тока при последовательном соединении одинакова в любом потребителе;
  • общее напряжение соответствует сумме напряжений на всех нагрузках;
  • сопротивление электроцепи составляют показатели сопротивления каждого потребителя.

Последовательное соединение проводников

Этот тип подключения предполагает возможность использования любого числа нагрузок. На этапе конструирования цепи следует помнить, что показатель общего сопротивления обязательно будет превышать уровень сопротивления отдельного участка. Этот факт объясняется увеличением длины проводов. В результате можно получить формулу для определения сопротивления всей цепи: R = R * n. В ней n равно числу проводников.

Что касается напряжения (U), то этот показатель на любом участке электроцепи будет меньше суммарного показателя в n раз. Например, если в бытовую электросеть с U = 220 В подключить 5 лампочек равной мощности, то напряжение на каждом элементе составит 44 вольта.

Также в процессе конструирования электроцепей важно помнить еще об одной важнейшей особенности последовательного подсоединения. Если в процессе работы выходит из строя даже один проводник, то ток не сможет проходить по всей схеме. Отличным примером, иллюстрирующим это свойство, будет ёлочная гирлянда. Достаточно сгореть одной лампе, и вся конструкция перестанет функционировать. Чтобы обнаружить вышедший из строя элемент, придется проверить всю гирлянду.

Параллельное подключение

Этот тип подсоединения предполагает установку проводников в общих начальных и конечных точках. В результате нагрузки монтируются параллельно, а их количество может быть любым. Для исследования главных свойств такой электроцепи необходимо собрать простую схему, состоящую из источника питания, выключателя и двух ламп. Ко всем нагрузкам также необходимо подключить по амперметру. Еще один прибор этого типа предназначен для измерения показателя общего сопротивления.

Параллельное подключение проводников

Если замкнуть ключ, то измерительные приборы, подсоединенные к нагрузке, покажут значение токовой нагрузки I1 и I2. На общем амперметре в такой ситуации можно будет увидеть суммарное значение токов на каждом из двух участков схемы. Это существенно отличает параллельное соединение от последовательного. В случае если одна нагрузка выходит из строя, то остальные продолжат свою работу. Именно поэтому в бытовых электросетях используется параллельное подсоединение.

Благодаря применению аналогичной схемы, появится возможность определить напряжение при параллельном соединении. Для этого нужно добавить в нее еще один прибор — вольтметр. Полученный с его помощью результат измерения будет общим для любого участка схемы. После этого можно провести расчет параллельного соединения резисторов. Чтобы решить такую задачу, нужно применить закон Ома. Он гласит, что сила тока равна отношению напряжения к сопротивлению.

Читайте так же:
Подключение две лампы через выключатель

Это позволяет вывести следующую формулу — U/R = U1/R1 + U2/R2. В ней R и U — показатели суммарного сопротивления и напряжения электроцепи соответственно. U1, U2, R1 и R2 — значения напряжения и сопротивления на первом и втором потребителе. Так как электроток одинаков для всей схемы, то формула для определения сопротивление при параллельном соединении примет вид — 1/R = 1/R1 + 1/R2.

Это говорит о том, что при этом виде подсоединения потребителей сопротивление имеет невысокое значение. Следовательно, токовая нагрузка тока существенно увеличится.

Данный факт необходимо учитывать при подключении к домашней электрической сети большого числа электроприборов. В такой ситуации возможен перегрев проводов.

Основные законы

Проектирование электрических цепей предполагает наличие хороших знаний основных закономерностей последовательного и параллельного подключения нагрузки. Это касается не только закона Ома, но и постулатов Кирхгофа. Эти физики внесли большой вклад в развитие электротехники. Для более простого восприятия основных законов все формулы стоит рассматривать в следующей последовательности:

Проектирование электрических цепей

  • при последовательном соединении через каждый участок цепи протекает ток одинаковой силы;
  • общее сопротивление схемы при последовательном подключении равно сумме сопротивления всех проводников;
  • напряжение в электросети при параллельном подключении одинаково для каждого участка;

В соответствии с первым законом Кирхгофа, алгебраическая сумма токов в узле всегда равна нулю. Благодаря этому, можно получить формулу для нахождения эквивалентного сопротивления цепи, если известно сопротивление каждой нагрузки. Она имеет следующий вид: Ro =R1*R2 / R1+R2.

Для последовательного соединения нагрузок применим второй закон Кирхгофа. Согласно ему, сумма ЭДС в замкнутом электрическом контуре равна сумме падений напряжений на каждой нагрузке. В результате общее сопротивление можно определить с помощью следующей формулы: Ro = R1 + R2.

Также можно рассчитать и индуктивность при различных видах соединения катушек. В случае с последовательным все довольно просто, достаточно использовать следующую формулу: Lo = L1 + L2. По сути, вместо двух элементов можно установить один с соответствующим показателем индуктивности.

При параллельном подсоединении катушек ситуация усложняется, так как возможны три варианта:

Параллельное подсоединение катушек

  • магнитные поля катушек не пересекаются: Lo = L1 * L2 / L1 + L2;
  • катушки подсоединены в одном направлении и их поля пересекаются: Lo = L1 * L2-М 2 / L1 + L2 — 2 М;
  • пересечение полей наблюдается при встречном подсоединении: Lo = L1 * L2-М 2 / L1 + L2 + 2 М.

Сегодня часто для расчета этих и других показателей, например, емкости конденсатора, можно использовать онлайн-калькулятор.

Особенности применения

Каждый из методов подключения нагрузки нашел свое применение в быту и промышленности. Параллельный способ целесообразно использовать в ситуации, когда электроприбор требуется целенаправленно отключать. Примером здесь может стать электрический звонок, соединенный последовательно с источником питания и кнопкой. В соответствии с этим же принципом работает и ручной фонарик, состоящий из светодиода, ключа и батарейки.

Люстры принято подключать параллельно

Однако последовательное включение приборов не всегда позволяет решить поставленные задачи. В каждой квартире присутствует большое количество осветительных приборов. Если все их соединить последовательно, то они будут включаться и отключаться одновременно, что требуется крайне редко. Именно люстры принято подключать параллельно. В результате у потребителя появится возможность активировать нужное в данный момент количество ламп. Благодаря этому, достигается требуемая освещенность помещения и экономится электрическая энергия.

В быту чаще всего используется смешенное подключение нагрузок. Этот вид подсоединения проводников является сочетанием параллельного и последовательного соединения. При этом на стадии проектирования электросети крайне важно учитывать все преимущества и недостатки каждого типа подсоединения. Для определения необходимых показателей общую цепь следует разделить на простые участки, а полученные результаты затем суммируются.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector