Sanitaryhygiene.ru

Санитары Гигиены
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

10. 7. Последовательность операций при отключении и включении электрических цепей на ПС, выполненных по упрощенным схемам

10.7. Последовательность операций при отключении и включении электрических цепей на ПС, выполненных по упрощенным схемам

На ПС, выполненных по упрощенным схемам, как правило, отсутствуют сборные шины и выключатели со стороны ВН, но обязательно имеются выключатели со стороны СН и НН. Такие ПС подключаются по схеме блока «трансформатор-линия» с отделителями, двух блоков с отделителями и перемычкой со стороны линий, по схеме мостика с отделителями (или выключателем) в перемычке и др.

Важную роль при переключениях играют перемычки при выводе трансформаторов в ремонт, а также при автоматических отключениях оборудования и возникновении послеаварийных режимов работы.

Последовательность отключения линии на двухтрансформаторных ПС выглядит следующим образом: на одной из ПС отключают выключатель и линейные разъединители, на другой ПС — линейные разъединители, при этом с линии снимают напряжение.

Включение линии: на одной ПС включают линейные разъединители и затем осуществляют подачу напряжения с помощью выключателя, чтобы проверить исправность линии и отсутствие на ней заземлений. Подача напряжения на линию включением разъединителей на другой ПС сопряжена с опасностью для персонала. Затем отключают выключатель первой линии. На другой ПС штангой или указателем напряжения проверяют отсутствие напряжения на вводе линии и включают линейные разъединители, чтобы подать на нее напряжение.

Отключение трансформатора Т1 в ремонт производят в следующей последовательности:

переводят питание нагрузки собственных нужд 0,4 кВ полностью на другой трансформатор Т2с. н; отключают рубильник и снимают предохранители со стороны 0,4 кВ трансформатора Т1с. н, чтобы исключить возможность обратной трансформации;

настраивают дугогасящий реактор на суммарный зарядный ток отходящих от шин 10 кВ линий и отключают разъединитель дугогасящего реактора;

АРКТ трансформаторов Т1 и Т2 переключают с автоматического на дистанционное управление. Переводят РПН трансформатора Т1 в положение, одинаковое с положением трансформатора Т2;

отключают АВР отделителей 110 кВ, АПВ выключателя Т1 со стороны НН и АВР секционного выключателя;

включают секционный выключатель 10 кВ и после проверки на нем нагрузки отключают выключатель со стороны НН Т1;

переключают АРКТ трансформатора Т2 с дистанционного на автоматическое регулирование;

РПН трансформатора Т1 устанавливают в положение, соответствующее номинальному напряжению и отключают АРКТ;

проверяют, отключен ли выключатель Т1 со стороны НН, и тележку с выключателем устанавливают в ремонтное положение;

включают заземляющий разъединитель в нейтрали обмотки 110 кВ трансформатора Т1;

дистанционно отключают отделители трансформатора Т1;

отключают линейные разъединители и разъединители в перемычке.

Включение трансформатора Т1 проводят в следующей последовательности:

проверяют, отключен ли короткозамыкатель на линии этого трансформатора;

проверяют, включен ли разъединитель в нейтрали обмотки трансформатора Т1;

проверяют, отключены ли отделители со стороны обмотки НН, после чего включают разъединитель с этой стороны;

при отключенном положении выключателя на стороне обмотки НН перемещают его тележку в контрольное положение и соединяют электрические разъемы в шкафу;

проверяют положение переключателя ответвлений трансформатора Т1, которое должно соответствовать номинальному напряжению;

включают отделители на стороне ВН и включением линейных разъединителей на трансформатор Т1 подают напряжение;

после проверки полнофазности включения трансформатора под напряжение, что устанавливается визуально по положению ножей трех фаз разъединителей и отделителей, отключают заземляющий разъединитель в нейтрали обмотки 110 кВ;

вкатывают в рабочее положение тележку с выключателем на стороне НН;

переключают АРКТ трансформатора Т2 с автоматического на дистанционное регулирование;

переключают на дистанционное регулирование АРКТ трансформатора Т1 и устанавливают его РПН в положение, в котором находится РПН работающего трансформатора Т2;

включают выключатель на стороне НН и проверяют распределение нагрузки между трансформаторами Т1 и Т2, затем отключают секционный выключатель 10 кВ;

включают АВР секционного выключателя 10 кВ, АПВ выключателя на стороне НН и АВР отделителей 110 кВ;

устанавливают предохранители и включают рубильник на стороне 0,4 кВ трансформатора Т1;

включают дугогасящий реактор и восстанавливают нормальный режим компенсации емкостных токов.

Далее на ответвительной ПС отключают отделители трансформатора и линейные разъединители, после чего линию включают в работу, а отключенный трансформатор готовят к ремонту. При включении трансформатора с линии опять снимают напряжение отключением выключателей на питающих ПС. На ответвительной ПС включают отделители трансформатора и линейные разъединители, затем на линию и трансформатор подают напряжение включением выключателя на питающей ПС и линию включают в транзит.

Отключение линии в ремонт выполняется в следующей последовательности:

на ответвительной ПС отключают в перемычке АВР секционных отделителей и переводят питание нагрузки собственных нужд с трансформатора Т1сн на Т2сн;

отключают АВР секционного выключателя;

включают секционный выключатель и тут же отключают выключатель на стороне НН трансформатора Т1. На первой и второй ПС отключают выключатели, а потом линейные разъединители;

отключенную линию заземляют.

Включение линии после ремонта производят в следующей последовательности:

снимают защитные заземления со всех сторон линии;

на ПС включают линейные разъединители;

на первой ПС включают выключатель, а выключателем на другой стороне линии включают ее в транзит и проверяют наличие нагрузки;

восстанавливают нормальную схему на второй ПС.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Глава 7. Обслуживание цепей оперативного тока

Глава 7. Обслуживание цепей оперативного тока 7.1. Источники оперативного тока на ПС Вторичные цепи электростанции (ПС) — это совокупность кабелей и проводов, соединяющих устройства управления, автоматики, сигнализации, защиты и измерения электростанции или ПС (ГОСТ

7.4. Контроль изоляции цепей оперативного тока

7.4. Контроль изоляции цепей оперативного тока В процессе обслуживания установок постоянного тока необходим контроль изоляции токоведущих частей относительно земли.Выбор метода определения места повреждения (ОМП), например, КЛ, является исключительно сложным процессом

10.3. Последовательность типовых операций с коммутационными аппаратами при включении и отключении ВЛ, К Л и трансформаторов

10.3. Последовательность типовых операций с коммутационными аппаратами при включении и отключении ВЛ, К Л и трансформаторов Включение ВЛ и КЛ:проверяется отключенное положение выключателя;включается шинный разъединитель;включается выключатель.Отключение ВЛ и

10.4. Последовательность операций при включении и отключении электрических цепей

10.4. Последовательность операций при включении и отключении электрических цепей В электрических цепях операции с коммутационными аппаратами выполняются в определенной последовательности и, кроме того, с предупреждением возникновения аварийных ситуаций и повреждения

10.8. Последовательность операций на ПС с двумя системами шин при выводе одной из них в ремонт

10.8. Последовательность операций на ПС с двумя системами шин при выводе одной из них в ремонт Необходимым условием перевода с одной системы шин на другую является равенство напряжений, что достигается включениемШСВ, соединяющего обе системы шин. В то же время ШСВ

11.7. Действия персонала при аварийном отключении ВЛ и КЛ

11.7. Действия персонала при аварийном отключении ВЛ и КЛ Автоматическое отключение тупиковых линий в случае отсутствия источника резервного питания, как правило, приводит к прекращению электроснабжения потребителей.В этом случае персонал обязан в кратчайший срок

Читайте так же:
Удлинитель с выключателем подключить провода

11.8. Действия персонала при аварийном отключении трансформаторов

11.8. Действия персонала при аварийном отключении трансформаторов Отключение защитой одного трансформатора при их раздельной работе на стороне НН и при отсутствии или отказе АВР приводит к прекращению электроснабжения соответствующей группы потребителей.В такой

11.9. Действия персонала при аварийном отключении сборных шин

11.9. Действия персонала при аварийном отключении сборных шин Сборные шины ПС могут отключиться:при КЗ на линиях, на оборудовании шин, на участках соединительных проводов от шин до выключателей, на выключателях;КЗ на любом присоединении, отходящем от шин, и отказе в работе

7.2. Экосистема (биогеоценоз), ее компоненты: продуценты, консументы, редуценты, их роль. Видовая и пространственная структура экосистемы. Цепи и сети питания, их звенья. Типы пищевых цепей. Составление схем передачи веществ и энергии (цепей питания). Правило экологической пирамиды. Структура и дина

7.2. Экосистема (биогеоценоз), ее компоненты: продуценты, консументы, редуценты, их роль. Видовая и пространственная структура экосистемы. Цепи и сети питания, их звенья. Типы пищевых цепей. Составление схем передачи веществ и энергии (цепей питания). Правило экологической

3.5. Стопоры для якорных цепей и якорей

3.5. Стопоры для якорных цепей и якорей Для крепления якорной цепи во время стоянки корабля на якоре и временного задержания якорной цепи при работе с нею устанавливаются стационарные и переносные стопоры.Стационарные стопоры применяются для временного задержания

Знаю, на место цепей крепостных / Люди придумали много иных

Знаю, на место цепей крепостных / Люди придумали много иных Из стихотворения «Свобода» (1861) Н. А. Некрасова (1821 — 1877).Иносказательно о долгом, сложном пути к свободе, о многочисленных препятствиях, лежащих на пути к

На место цепей крепостных / Люди придумали много других

На место цепей крепостных / Люди придумали много других Из стихотворения «Свобода» (1861) Н. А. Некрасова (1821 — 1877): Знаю, на место цепей крепостных Люди придумали много других. Иносказательно о невозможности добиться совершенного общественного

Пролетариям нечего терять, кроме своих цепей. Приобретут же они весь мир

Пролетариям нечего терять, кроме своих цепей. Приобретут же они весь мир Фраза из «Манифеста Коммунистической партии» (1848), написанного Карлом Марксом (1818— 1883) и Фридрихом Энгельсом (1820— 1895).Конец гл. 4, последний абзац: «Пролетариям нечего в ней (революции. — Сост.) терять,

V. ПРОИЗВОДСТВО ГРУЗОВЫХ ОПЕРАЦИЙ 1. Общие требования при производстве грузовых операций

V. ПРОИЗВОДСТВО ГРУЗОВЫХ ОПЕРАЦИЙ 1. Общие требования при производстве грузовых операций Производство грузовых операций на судне является ответственной работой. О значении их говорить не приходится, но на характере их следует остановиться.Как известно, назначение

Схемы распределительных устройств высокого напряжения двухтрансформаторных подстанций

На рисунках приведены типовые схемы РУ двухтрансформаторных подстанций с выключателями на ВН.

Рисунок 1 — Схема №1 ‑ два блока с выключателями и неавтоматической перемычкой со стороны линий

Схема №1 ‑ два блока с выключателями и неавтоматической перемычкой со стороны линий, применяется на ответвительных и тупиковых подстанциях с РУ ВН 35-220 кВ.

В нормальном режиме, при работе двух линий и двух трансформаторов перемычка разомкнута. Перемычка допускает следующие режимы работы: параллельное питание двух трансформаторов по одной из линий (W1 или W2); питание трансформатора Т1 по линии W2 или питание трансформатора Т2 по линии W1.

Параллельное питание двумя линиями одного трансформатора не допускается, так как при таком режиме резко снижается надежность питающей сети.

Схема №2 ‑ мостик с выключателем в перемычке и выключателями в цепях линий, применяется на ВН РУ 35 кВ ответвительных, тупиковых и проходных подстанций преимущественно блочного типа КТПБ. Коммутация линии производится одним выключателем, коммутация трансформатора — двумя.

Рисунок 2- Схема №2 – мостик с выключателями в цепях линий

Рисунок 3- Схема №3 – мостик с выключателями в цепях трансформаторов

Схема №3 ‑ мостик с выключателем в перемычке и выключателями в цепях трансформаторов, имеет то же применение, что и схема №2. Коммутация линии производится двумя выключателями, коммутация трансформатора — одним. Схема №3 предпочтительней схемы №2 при частой коммутации трансформаторов.

Рисунок 4 — Схема №4 ‑ мостик с выключателями в цепях линий и ремонтной перемычкой на разъединителях со стороны линий

Схема №4 ‑ мостик с выключателями в цепях линий и ремонтной перемычкой на разъединителях со стороны линий, применяется на ВН тупиковых, ответвительных и проходных подстанций напряжением 35-220 кВ. Ремонтная перемычка на разъединителях предназначена для вывода в ремонт выключателя в перемычке без нарушения транзита мощности. В нормальном режиме ремонтная перемычка отключена. На тупиковых и ответвительных подстанциях в нормальном режиме перемычка с выключателем отключена. На проходных подстанциях перемычка с выключателем нормально замкнута, через нее осуществляется транзит мощности.

Схема №5 ‑ мостик с выключателями в цепях трансформаторов и ремонтной перемычкой на разъединителях со стороны трансформаторов, имеет то же применение, что и схема №4. Схема №5 предпочтительней схемы №4 при частой коммутации трансформаторов. Схема применяется при относительно коротких линиях.

Рисунок 5- Схема №5 ‑ мостик с выключателями в цепях трансформаторов и ремонтной перемычкой на разъединителях со стороны трансформаторов

Рисунок 6- Схема №6 ‑ одинарная система шин, секционированная выключателем

Схема №6 ‑ одинарная секционированная выключателем система шин, широко применяется в РУ НН, в РУ СН и в РУ ВН подстанций при числе присоединений более пяти.

Рисунок 7- Схема №7 ‑ одинарная система шин, секционированная двумя развилками из двух выключателей, включенных в цепях питающих присоединений

Схема №7 ‑ одинарная система шин, секционированная двумя развилками из двух выключателей, включенными в цепях питающих присоединений, применяется в РУ 110-220 кВ подстанций при наличии питающих линий на данном напряжении. Схема обладает повышенной маневренностью по сравнению со схемой №6 (вывод в ремонт выключателя в цепи питающего присоединения не приводит, в отличие от схемы №6, к погашению присоединения).

Схема №8 ‑ одинарная система шин секционированная двумя развилками из двух выключателей,включенными в цепях трансформаторов, имеет то же применение в РУ 110-220 кВ подстанций, что и схема №6. Схема обладает повышенной маневренностью по сравнению со схемой №6 (вывод в ремонт выключателя в цепи трансформаторов не приводит, в отличие от схемы №6, к «погашению» присоединения).

Схема №9–одинарная секционированная система шин с подключением ответственных присоединений через «полуторную» цепочку, имеет то же применение, что и схема №8 при повышенных требованиях к сохранению в работе особо ответственных линий.

Рис.8 Схема №8 ‑ одинарная система шин, секционированная двумя развилками из двух выключателей, включенными в цепях трансформаторов

Рис. 9. Схема №9 – одинарная секционированная система шин с подключением ответственных присоединений через «полуторную» цепочку

Читайте так же:
Чтобы не пачкались стены около выключателя

Рисунок 10. Схема №10 – одинарная, секционированная выключателем и обходная системы шин, с совмещенным секционным и обходным выключателем

Схема №10 ‑ одинарная секционированная выключателем и обходная системы шин с совмещенным секционным и обходным выключателем, применяется на ВН и СН 110-220 кВ подстанций при специальном обосновании с числом присоединений пять или шесть.

Обходная система шин позволяет поочередно выводить в ремонт любой линейный выключатель без «погашения» присоединения, даже кратковременного. Для этого необходимо произвести следующие операции: подать напряжение обходным выключателем на обходную шину (опробование обходной шины) с секции, к которой подключен выводимый в ремонт выключатель, включить соответствующий обходной разъединитель, отключить выводимый в ремонт выключатель, отключить линейный и шинный разъединители.

В связи с тем, что в схемах с совмещенным секционным и обходным выключателем при использовании его в качестве обходного нарушается связь между секциями, применять схему можно в том случае, когда по условиям сети допускается такое деление РУ.

Рисунок 11- Схема №11 ‑ одна рабочая секционированная и обходная системы шин с отдельными секционным и обходным выключателями

Схема №11 ‑ одинарная секционированная выключателем и обходная системы шин с отдельными секционным и обходным выключателями, применяется на ВН и СН 110-220 кВ подстанций тогда, когда не допускается разрыв питаемого от данной подстанции района на две части при ревизии и ремонте выключателя любого присоединения. Схема применяется при специальном обосновании с числом присоединений семь и более.

Схема №12 – с две секционированные системы шин с двумя шиносоединительными и двумя секционными выключателями, применяют в РУ 110-220 кВ подстанций. Возможны два варианта работы этой схемы. В первом варианте одна система шин является рабочей, вторая – резервной. В нормальном режиме работы все присоединения подключены к рабочей системе шин через соответствующие разъединители, шиносоединительные выключатели отключены, напряжение на резервной шине отсутствует. В этом режиме надежность схемы близка к надежности схемы одинарной, секционированной выключателем. Во втором варианте (с фиксированным присоединением цепей) вторую систему шин используют постоянно в качестве рабочей. При этом все присоединения к источникам питания и к отходящим линиям распределяют между обеими системами шин.

Шиносоединительный выключатель в нормальном режиме замкнут. Надежность схемы во втором варианте работы выше, чем в первом.

Схема с двумя секционированными системами позволяет производить ремонт одной системы шин (секции), сохраняя в рабочем состоянии все присоединения. Для этого все присоединения переводят на одну систему шин путем соответствующих переключений.

Рисунок 12 — Схема №12 – две секционированные системы шин с двумя шиносоединительными и двумя секционными выключателями

Схема №13 ‑ две рабочие и обходная системы шин с шиносоединительным и обходным выключателями, применяется на ВН и СН подстанций и позволяет выделять по тем или иным причинам на отдельную систему шин район или предприятие или проводить испытание отдельной ВЛ, а также присоединять более двух нерезервируемых радиальных ВЛ. Схема №11 может применяться в РУ 220 кВ при специальном обосновании.

Рисунок 13- Схема №13 ‑ две рабочие и обходная системы шин

Рисунок 14 — Схема №14 – четырехугольник

Схема № 14 – четырехугольник, применяется при четырех присоединениях (две линии и два трансформатора) на ВН подстанций, выдающих мощность в сеть СН и ВН, а также на ВН подстанций, секционирующих одиночную линию, когда потребитель на ПС не терпит перерыва в питании. Схема применяется при мощности трансформаторов (автотрансформаторов) 125 МВ×А и более на напряжении 220 кВ и на напряжении 330-750 кВ при любой мощности трансформаторов. Схема имеет высокую надежность и высокую маневренность. Коммутация каждого присоединения производится двумя выключателями, в то же время каждый выключатель является общим для двух присоединений. Схема позволяет выводить в ремонт любой выключатель без «погашения» присоединения и без дополнительных оперативных переключений. При выводе любого выключателя в ремонт надежность схемы резко падает.

Схема четырехугольника имеет сравнительно высокую экономичность: число выключателей на присоединение равно 1.

Рис.15 Схема № 15 – трансформаторы – шины с полуторным присоединением линий

Схема №15 – трансформаторы – шины с полуторным присоединением линий, применяется в РУ 220-750 кВ подстанций при числе присоединений более пяти и при необходимости подключения линий через два выключателя.

Рисунок 16 — Схема №16 –трансформаторы-шины с присоединением линий через два выключателя

Схема №16 –трансформаторы – шины с присоединением линий через два выключателя, имеет то же применение, что и схема №14 при пяти и шести присоединениях (три или четыре линии и два трансформатора).

Схема «трансформаторы – шины» в любых режимах при отказах в работе какого-либо выключателя или других аппаратов и устройств удовлетворяет основному требованию, предъявляемому к подстанциям III категории, — выпадению не больше одной линии, и именно той, к которой присоединен отказавший выключатель.

Это обстоятельство при оценке надежности главных схем является наиболее важным для подстанций, представляющих собой системные коммутационные узлы с мощными межсистемными или внутрисистемными связями.

Описание конструкции КРУЭ – 110 кВ и КРУ – 10 кВ.

КРУЭ — предназначены для закрытых подстанций глубокого ввода и имеют трехфазное исполнение сборных шин на ячейках ЯЭ -110 кВ. В состав КРУЭ входят все элементы схемы электрических соединений распределительною устройства — выключатели, разъединители, заземлители, трансформаторы тока, трансформаторы напряжения с аппаратурой управления, контроля, сигнализации, измерения и блокировки. КРУЭ обеспечивают присоединение кабельных и воздушных линий и токопроводов с элегазовой изоляцией. Унифицированные элементы КРУЭ позволяют собирать любую схему электрических соединений распределительного устройства подстанции. Изоляция распределительных устройств обеспечивается элегазом при определенном давлении и литыми из специальных эпоксидных смол изоляторами. Литые изоляторы служат для фиксации токоведущих частей, находящихся под высоким напряжением в герметичном корпусе, а некоторые из них, кроме того выполняют функцию герметичной перегородки между отдельными секциями полюса ячейки.

Элегаз является также хорошей дугогасительной средой, что позволяет конструктировать коммутационные аппараты с высокой отключающей способностью и незначительными габаритами.

Кабели оперативных цепей, цепей управления, релейной защиты, автоматики, телемеханики и воздухопроводы прокладываются в лотках из металлических конструкций расположенных в железобетонных перекрытиях здания подстанции.

Помещение КРУЭ оснащают вентиляцией, которая должна работать еженедельно 1 -2 часа, а при технических осмотрах и ремонтах непрерывно.

КРУЭ имеют следующие преимущества перед открытыми РУ:

• удобство, простота и безопасность обслуживания;

• взрыво- и пожаробезопасность;

• электрические аппараты не подвержены запылению, загрязнению и
атмосферным колебаниям температуры.

В тоже время КРУЭ очень дороги в эксплуатации из-за высокой стоимости элегаза. Электрические подстанции, проектируемые в черте городов должны соответствовать санитарным нормам, поэтому в данной подстанции силовые трансформаторы находятся в здании, имеющем камеры шумоглушения. В трансформаторных помещениях имеются маслоприемники, по которым масло стекает, в аварийных ситуациях, в маслосборники, находящиеся на территории подстанции. На втором этаже здания находится закрытое распределительное устройство, выполненное из ячеек КРУ с вакуумными выключателями. Вакуумные выключатели имеют ряд достоинств: взрывобезопасны, дугогасительной средой является вакуум, который в помещениях не может принести вред обслуживающему персоналу.

Читайте так же:
Установка выключателей по евростандарту от пола

Соединение силовых трансформаторов с закрытым РУ 10 кВ осуществляется комплектным токопроводом.

Трансформаторы собственных нужд, а также ТСН + ДГК находятся в помещениях на первом этаже в отдельном огражденном распределительном устройстве 10/ 0,4 кВ. Техническое описание комплектного распределительного устройства ячейки К-105М

Комплектное распределительное устройство (КРУ) К-105М предназначена для приема и распределения электрической энергии трехфазного переменного тока частотой 50 и 60 Гц, напряжением 6,10 кВ для систем с изолированной нейтралью и используется в качестве вводов и секционирования в распределительных устройствах, состоящих из шкафов К-105М на электрических станциях, подстанциях и в электроустановках промышленных предприятий.

2. Устройство и эксплуатация

Шкаф КРУ представляет собой жесткую металлическую конструкцию, в которую встроены аппараты и приборы совместно с их несущими элементами и электрическими соединениями.

Шкаф КРУ с выдвижным элементом состоит из корпуса шкафа с релейным шкафом и выдвижного элемента.

Корпус шкафа представляет собой металлическую сборно-сварную конструкцию, включающую аппаратуру, токоведущие части, защитные шторки, заземляющие и блокировочные устройства, неподвижные электрические контакты главной цепи.

Релейный шкаф представляет собой металлическую конструкцию для размещения приборов измерения и учета, аппаратуры, автоматики, защиты, управления, сигнализации и других устройств вспомогательных цепей, включая автоматические устройства обогрева.

Выдвижной шкаф может занимать относительно корпуса шкафа положение: рабочее, контрольное и ремонтное. В рабочем, контрольном и ремонтном положении выдвижной элемент фиксируется.

В корпусе шкафа, представляющем собой металлическую сборно-сварную конструкцию, стационарно закрепленную, размещены:

• заземляющий разъединитель с прибором и блокировками;

• система устройства фиксации, доводки и заземления выдвижного
элемента;

• неподвижные контакты главной цепи;

• сборные шины, провода вспомогательных цепей, защищаемые
металлическими кожухами и металлорукавом;

• шкаф кабельного ввода состоит из отсека сборных шин, кабельного отсека,
релейного шкафа и выхлопного клапана. Кабельный ввод позволяет осуществить подсоединение к шинным отпайкам по три жилы разъемных кабелей. Ввод осуществляется внизу.

Структурная схема.

Главная схема электрических соединений ПС — это совокупность основного электрооборудования, сборных шин, коммутационной и другой первичной аппаратуры со всеми выполненными между ними в натуре соединениями. Данная проектируемая ПС – транзитная, элегазовая, выполненная по схеме с одной секционированной выключателями системой сборных шин.

Схема на стороне ВН:

При повреждении одного из силовых трансформаторов релейная защита выключает трансформаторный выключатель 110 кВ и два вводных выключателя соответствующих секций 10 кВ, при этом АВР секционных вакуумных выключателей (СВВ) 10 кВ мгновенно запитывают секции поврежденного силового трансформатора, что позволяет обеспечивать надежное электроснабжение потребителей. При отключении либо поврежденном линейном выключателе 110 кВ одной из линий секция 110 кВ питается от другой линии 110 кВ, что также позволяет оставлять оба силовых трансформатора в работе. При отказе в отключении трансформаторного выключателя 110 кВ УРОВ действует на отключение линейного выключателя данной секции и вводится запрет АВР секционного элегазового выключателя (СЭВ) 110 кВ. Также данная схема обеспечивает подготовку рабочего места при текущих и капитальных ремонтах без применения переносных защитных заземлений, так как наличие большого количества разъединителей со стационарными заземляющими ножами обеспечивает достаточную безопасность при работах.

Схема на стороне НН:

На стороне 10 кВ применена схема сборных шин секционированная двумя секционными выключателями под АВР, что позволяет при повреждении одного из силовых трансформаторов, через секционные выключатели запитать секции оставшиеся без напряжения. По два секционных выключателя на каждую пару секций применяется для повышения надежность. При отказе одного из секционных выключателей в отключении разрыв обеспечит другой. Также при этой схеме удобно подготавливать рабочее место проведения текущих и капитальных ремонтов секции

Элегазовые выключатели 110 кВ

Элегазовый выключатель — это разновидность высоковольтного выключателя, коммутационный аппарат, использующий элегаз в качестве среды гашения электронной дуги; предназначенный для оперативных подключений и отключений индивидуальных цепей или электрооборудования в энергосистеме.

Схема элегазового выключателя

Рисунок 1 – Схема элегазового выключателя

Элегазовые выключатели начали усиленно разрабатываться с 1980 г. и имеют большие перспективы при напряжениях 110…1150 кВ и токах отключения до 80 кА. В технически развитых странах элегазовые выключатели высокого и сверхвысокого напряжения (110-1150 кВ) практически вытеснили все другие типы аппаратов.

Элегазовые выключатели высокого напряжения выполняют работу за счет изоляции фаз друг от друга посредством элегаза. Когда срабатывает уведомление о том, что нужно отключить электрооборудование, контакты некоторых камер (если аппарат колонковый) размыкаются. Таким способом, встроенные контакты образуют дугу, которая помещена в газовую среду. Она разлагает газ на разные компоненты, но при этом и сама уменьшается из-за высокого давления в емкости.

В процессе использования элегазового выключателя выполняются циклы подключения и отключения коммутационного аппарата. При различных дейсвий с выключателем в режимных целях, в большинстве случаев, ток отключения располагается в границах обозначенных значений. Количество потенциально возможных операций зависимо от тока отключения устанавливает изготовитель. Для того, найти суммарное число операций отключения, существенно нужно пользоваться особой диаграммой взаимосвязи, которую можно найти в паспорте выключателя. Чем больше ток, тем меньшее количество возможных циклов включения/отключения элегазового выключателя.
Выключатель специализирован для установки в ОРУ 110кВ, так как его номинальное рабочее напряжение – 126кВ. Выключатель делает работу в согласовании с заявленными производственным изготовителем при условиях:

  • установки на возвышенности над ярусом морского побережья не больше тысячи м-ов;
  • температуры окружающей среды от -350 С до +400 С;
  • установки в согласовании с необходимыми условиями завода-изготовителя;

Элегазовые выключатели различают

  • колонковые
  • баковые

2 Колонковые выключатели

Колонковый элегазовый выключатель – такое приспособление с автокомпрессией в положении удовлетворить подходящую коммутационную способность всех условиях переключения. Выключатель сделан в колонковом трёхполюсном выполнен с совместной рамой для полюсов и привода. Устройство оснащёно: аппаратом соблюдения порядка плотности элегаза с контактами для предупредительной сигнализации о понижении давления и воспрещения пользоваться выключателем, указателями местоположения «ON — OFF» выключателя и расположения пружин, счётчиком процедур вмешательства, предохранительными клапанами для сбрасывания лишнего давления, манометром соблюдения порядка давления в аппарате, платформами заземления. Шкаф управления имеет герметичную пыле — влагоустойчивую конструкцию с подогревом.

Конструкция колонкового выключателя

Рисунок 2 – Конструкция колонкового выключателя

3 Баковые выключатели

Элегазовые баковые выключатели – могут быть использованы на подстанциях ОРУ типа классов напряжения 35-220 кВ для осуществления коммутации переходных процессов в энергосистемах, т.е. претворения процедур подключения и отключения индивидуальных цепей при ручном либо автоматическом управлении. Они делаются в трёхполюсном либо однополюсном выполнении. Полюсы коммутационного аппарата, с одноразрывными дугогасительными устройствами и высоковольтными вводами, покрытой горячим цинком и поставлены на опорной раме. Управление данным аппаратом исполняется пружинным приводом. Выключатель в однополюсном выполнении (один пружинный привод на каждый полюс) имеет схему управления, которая дает возможность (с пульта управления) при поддержки электромагнитовоперировать 3 – мя полюсами единовременно либо всяким полюсом отдельно в зависимости от схемы блокировки, управления, сигнализации и релейной защиты.

Читайте так же:
Defond выключатель для фена brg 1213

Преимуществами баковых элегазовых выключателей со встроенными трансформаторами тока перед комплектными наборами «колонковый элегазовый выключатель плюс отдельно стоящий трансформатор тока» являются: повышенная сейсмостойкость, наименьшая площадь отчуждаемой местности территорий подстанции. Также наименьший объем запрашиваемых фундаментных трудовых функций при постройки подстанций, усиленная защищенность состава кадров подстанции (дугогасительные устройства расположены в заземленных металлических резервуарах), вероятность осуществления применения обогрева элегаза при использовании в областях с прохладным климатом.

4. Принцип гашения дуги

Успехи в разработках элегазовых выключтаелей откровенно оказали значительное воздействие на введение в эксплуатационную деятельность компактно размещенных на небольшой территории открытых распределительных устройствах размещенных на открытом воздухе, закрытых распределительных устройствах – размещенных в помещении и элегазовых комплектно распределительных устройствах. В элегазовых выключателях могут использоваться, разные методы гашения дуги зависимо от номинального напряжения, номинального тока отключения и объективных оценок энергосистемы (а также различных электроустановок).

В элегазовых дугогасительных устройствах , в сравнение от воздушных дугогасительных устройств, при гашении дуги истечение газа через сопло происходит не в воздушную среду, а в скрытный в себе объем камеры, наполненный элегазом при условно сравнительно маленьком лишнем давлении.

По методике гашения электрической дуги при выключении различают последующие элегазовые выключатели:

  • Автокомпрессионный элегазовый коммутационный аппарат , где существенно нужный крупно масштабный расход элегаза через сопла компрессионного дугогасительного устройства создается по ходу подвижной системы выключателя (автокомпрессионный выключатель с одной ступенью давления).
  • Элегазовый выключатель с электромагнитным дутьем, в котором гашение дуги в дугогасительном устройстве гарантируется вращением её по кольцевым контактам под воздействием магнитного поля, формируемого отключаемым током.
  • Элегазовый выключатель с камерами низкого и высокого давления, в каком принцип снабжения газового дутья через сопла в дугогасительном аппарате аналогичен воздушным дугогасительным устройствам (Элегазовый выключатель с 2 – мя ступенями давления).
  • Автогенерирующий элегазовый выключатель, где очень важный крупномасштабный расход элегаза через сопла дугогасительного устройства формируется за счет подогрева и увеличения давления элегаза дугой отключения в специально подготовленной камере (автогенерирующий элегазовый выключатель с одной ступенью давления).

5. Достоинства и недостатки

Учитывая вышеупомянутое, между плюсами выключателей элегазового типа можно отметить следующее:

  • возможность установки в электроустановках как закрытого, так и открытого выполнения буквально всех классов напряжения;
  • отмечается простота и надежность конструкции в эксплуатации;
  • высокая интенсивность скорости срабатывания;
  • низкие динамические нагрузки на фундаментные опоры;
  • неплохая отключающая способность;
  • небольшие габаритные пропорции и сумма веса;
  • наличие в приводе автоматического управления двух ступеней обогрева;
  • большой коммутационный ресурс контактной системы;

Недостатки элегазовых выключателей:

  • требуется более внимательное отношение к использованию и учету элегаза;
  • высокие необходимые условия к качеству элегаза;
  • необходимость специально подготовленных устройств для заполнения, перекачки и фильтрации элегаза;
  • относительно высокая стоимость элегаза;
  • сложность и накладность изготовления — при производственном изготовлении неизбежно нужно соблюдать высокоё качество аппарата;
  • дороговизна конструкции и второстепенных элементов;
  • при выводе из строя выключателя в режиме ЧП, починка данного аппарата может быть не актуальной.

6. Технические характеристики

В таблице приведены технические характеристики выключателей ВГТ — 110 кВ.

Таблица 5.1 – Основные технические данные выключателя ВГТ — 110 кВ

ПараметрДопустимое значение
Номинальное напряжение110 кВ
Время отключения0,035 с
Номинальный ток2500 А
Рабочее напряжение (максимальное)126 кВ
Максимальный ток отключения40 кА
Пауза при АПВ0,3 с
Ток КЗ (максимальный)100 кА
Время протекания тока КЗ3 с
Утечка элегаза за 12 месяцев0,8 %
Напряжение подогревательных устройств220 В
Тип приводаПружинный
Длина пути утечки270 см
Масса элегаза6,3 кг
Количество приводов1
Масса выключателя1700 кг
Срок до планового ремонта12 лет
Срок эксплуатации25 лет

Вывод:

выключатель использующий элегаз в качестве среды гашения электронной дуги, очень распространен на ОРУ и ЗРУ, без них не обходиться почти ни одна подстанции в мире. Их надежность и высокие технические характеристики дают понять, почему они так популярны в энергосистеме. В целом это оптимальный коммутационный аппарат в ценовой категории, и надежности по сравнению с воздушными, масляными и маломасляными высоковольтными выключателями.

Ссылки

1. ГОСТ 19431-84 «Энергетика и электрификация. Термины и определения»
2. Б.Н.Неклепаев «Электрическая часть электростанций и подстанций »; 2-е издание, переработанное и дополненное, 1980 г.

Оперативные переключения на подстанциях — Переключения на подстанциях, выполненных по упрощенным схемам

Схема блока трансформатор-линия с отделителями и короткозамыкателе

Последовательность основных операций и действий при отключении и включении электрических цепей на подстанциях, выполненных по упрощенным схемам
На подстанциях, выполненных по упрощенным схемам, обычно отсутствуют сборные шины и выключатели со стороны высшего напряжения, но обязательно имеются выключатели у трансформаторов со стороны среднего и низшего напряжений. Такие подстанции подключаются по схеме блока трансформатор-линия с отделителями (рис. 9.4), двух блоков с отделителями и неавтоматической перемычкой со стороны линий (рис. 9.5), по схеме мостика с автоматическими отделителями (или выключателем) в перемычке (рис. 9.6) и др.
Перемычки в схемах подстанций играют существенную роль как при переключениях на линиях и трансформаторах при выводе их в ремонт, так и при автоматических отключениях оборудования и создании послеаварийных режимов работы.
Подстанции, выполняемые по схеме рис. 9.5, подключаются в рассечку проходящей линии, и через их перемычки осуществляется транзит мощности. Для повышения надежности и оперативности схемы параллельно перемычке с выключателем, устанавливают перемычку из разъединителей. В этом случае перемычка из разъединителей выполняет функции ремонтной перемычки, замыкаемой только на время ремонта выключателя.

Рис. 9.4. Схема блока трансформатор-линия с отделителями и короткозамыкателем
Подстанции, выполняемые по схеме рис. 9.6, подключаются ответвлениями к двум (двухцепным) проходящим линиям. Отделители в перемычке нормально отключены и замыкаются автоматически при устойчивом повреждении и отключении защитой одной линии.
Подстанции по упрощенным схемам снабжают автоматическими устройствами, предназначенными для автоматического устранения аварийных ситуаций на подстанциях и питающих линиях.
С точки зрения переключений наибольший интерес представляют двухтрансформаторные подстанции. Ниже рассматривается последовательность операций и действий персонала при отключении и включении питающих линий и трансформаторов на подстанциях с упрощенными схемами.
Отключение линии W 1 (рис. 9.5): на подстанции А отключают выключатель Q 1 и линейные разъединители QS ; на подстанции Б отключают линейные разъединители QS 1, при этом с линии снимают напряжение. В данном случае персонал должен знать, что отключение зарядного тока линии линейными разъединителями допустимо.
Включение линии W 1: на подстанции А включают линейные разъединители QS и затем выключатель Q 1 — линию опробуют напряжением. Подачу напряжения на линию осуществляют с помощью выключателя, чтобы проверить исправность линии и отсутствие на ней заземлений, которые могли быть забыты ремонтным персоналом, если линия выводилась в ремонт . Подача напряжения на линию включением разъединителей на подстанции Б (без предварительного опробования напряжением с помощью выключателя) сопряжена с опасностью для персонала. Далее отключают выключатель Q 1 линии W 1 на подстанции А — с линии снимают напряжение; с привода выключателя Q 1 снимают напряжение оперативного тока. На подстанции Б проверяют (штангой, указателем напряжения) отсутствие напряжения на вводе линии и включают линейные разъединители QS 1 — на линию подают напряжение. На подстанции А подают напряжение оперативного тока на привод и включают выключатель — линию W 1 ставят под нагрузку.
Отключение трансформатора Т1 в ремонт (рис. 9.6), когда включены АПВ выключателей 10 кВ трансформаторов, АВР секционного выключателя 10 кВ и отделителей 110 кВ, выполняют в следующей последовательности:
— переводят питание нагрузки собственных нужд (0,4 кВ) полностью на трансформатор Т2СН ; отключают рубильник и снимают предохранители со стороны 0,4 кВ трансформатора Т1СН , чтобы исключить возможность обратной трансформации;
— настраивают дугогасящий реактор L 2 на суммарный зарядный ток отходящих от шин 10 кВ линий и отключают разъединитель дугогасящего реактора L 1;
— автоматические регуляторы напряжения трансформаторов Т1 и Т2 переключают с автоматического на дистанционное управление. Переводят РПН трансформатора Т1 в положение, одинаковое с положением трансформатора Т2 ;
— отключают АВР отделителей 110 кВ (в соответствии с инструкцией), АПВ выключателя Q 3 и АВР секционного выключателя;
— включают секционный выключатель СВ 10 кВ и после проверки на нем нагрузки отключают выключатель Q 3 трансформатора Т1 ;
— переключают АРКТ трансформатора Т2 с дистанционного на автоматическое регулирование;
— автоматический регулятор напряжения под нагрузкой (РПН) трансформатора Т1 устанавливают в положение, соответствующее номинальному напряжению (если оно было выше номинального) и отключают АРКТ;
— проверяют, отключен ли выключатель Q 3, и тележку с выключателем устанавливают в ремонтное положение;
— включают заземляющий разъединитель в нейтрали обмотки 110 кВ трансформатора Т1 ;
— дистанционно отключают отделители QR 1 — отключают намагничивающий ток трансформатора Т1;
— отключают линейные разъединители QS 1 и разъединители в перемычке QS 3.
При подготовке рабочего места выполняют комплекс мероприятий, предусмотренных правилами безопасности.
Включение в работу трансформатора Т1 . После окончания ремонта, осмотра оперативным персоналом места работ и снятия защитных заземлений операции и действия проводят в следующей последовательности:
— проверяют, отключен ли короткозамыкатель QN 1, который при работах мог быть включен ремонтным персоналом;
— проверяют, включен ли разъединитель в нейтрали обмотки 110 кВ трансформатора Т1 ;
— проверяют, отключены ли отделители QR 3, после чего включают разъединители QS 3;
— при отключенном положении выключателя Q 3 перемещают его тележку в контрольное положение и соединяют электрические разъемы в шкафу;
— проверяют положение переключателя ответвлений трансформатора Т1 (оно должно соответствовать номинальному напряжению);
— включают отделители QR 1 и включением линейных разъединителей трансформатор Т1 ставят под напряжение;
— после проверки полнофазности включения трансформатора под напряжение, что устанавливается визуально по положению ножей трех фаз разъединителей QS 1, отделителей QR 1 и нормальному углу трансформатора, отключают заземляющий разъединитель в нейтрали обмотки 110 кВ;
— вкатывают в рабочее положение тележку с выключателем Q 3;
— переключают АРКТ трансформатора T 2 с автоматического на дистанционное регулирование;

Читайте так же:
Нормы переходного сопротивления масляных выключателей

Схема двух блоков с отделителями и неавтоматической перемычкой со стороны линий
Рис. 9.5. Схема двух блоков с отделителями и неавтоматической перемычкой со стороны линий
Схема двухтрансформаторной ответвительной подстанции с автоматическими отделителями в перемычке
Рис. 9.6. Схема двухтрансформаторной ответвительной подстанции с автоматическими отделителями в перемычке

— переключают на дистанционное регулирование АРКТ трансформатора Т1 и устанавливают его РПН в положение, в котором находится РПН работающего трансформатора Т2 ;
— включают выключатель Q 3 и проверяют распределение нагрузки между трансформаторами Т1 и Т2 , затем отключают секционный выключатель СВ 10 кВ.
Далее включают АВР секционного выключателя 10 кВ, АПВ выключателя Q 3 и АВР отделителей 110 кВ;
— переключают АРКТ трансформаторов Т1 и Т2 с дистанционного на автоматическое регулирование;
— устанавливают предохранители и включают рубильник на стороне 0, 4 кВ трансформатора ТУ и создают нормальную схему питания нагрузки собственных нужд;
— включают дугогасящий реактор L 1 и восстанавливают нормальный режим компенсации емкостных токов.
В том случае, когда к двум параллельным линиям подключена ответвлением лишь одна подстанция, отключение намагничивающего тока трансформатора часто производят не отделителями, а выключателями на питающих подстанциях. Для этого на ответвительной подстанции переводят питание нагрузки с отключаемого трансформатора на другой, остающийся в работе. Затем на питающих подстанциях отключают выключатели линии, снимая напряжение сразу с линии и подключенного к ней трансформатора.
Далее на ответвительной подстанции отключают отделители трансформатора и линейные разъединители, после чего линию включают в работу, а отключенный трансформатор готовят к ремонту. При включении трансформатора в работу с линии опять снимают напряжение отключением выключателей на питающих подстанциях. На ответвительной подстанции включают отделители трансформатора и линейные разъединители, потом на линию и трансформатор подают напряжение включением выключателя на питающей подстанции и далее линию включают в транзит. Заметим, что этот способ отключения и включения трансформатора связан с кратковременным ослаблением схемы сети и его применение зависит от режима нагрузки линии.
Отключение для ремонта линии W 1 (рис. 9.6) выполняется в следующей последовательности: на ответвительной подстанции Б отключают АВР секционных отделителей в перемычке QR 3 и переводят питание нагрузки собственных нужд с трансформатора Т1 CH на Т2СН ; отключают АВР секционного выключателя, включают секционный выключатель СВ и тут же отключают выключатель Q 3 трансформатора Т1 . На подстанциях А и В отключают выключатели Q 1 и Q 5 соответственно, а потом линейные разъединители. На подстанции Б отключают линейные разъединители QS 1. Заземляют отключенную линию W 1 в соответствии с требованиями правил безопасности.
Заметим, что на подстанции Б не проводились операции заземления нейтрали и отключения L 1 трансформатора Т1 , так как коммутация трансформатора и линии осуществлялась не отделителями, а выключателем, неодновременностью расхождения контактов фаз которого практически пренебрегают. После отключения линии в ремонт на подстанции Б может быть включен в работу трансформатор Т1 , который соединяют через перемычку с оставшейся в работе линией W 2. Если на время ремонта линии W 1 трансформатор T 1 остается отключенным, необходимо настроить L 2 на суммарный зарядный ток линий, отходящих от 1-й и 2-й секций 10 кВ.
Включение после ремонта линии W 1 (рис. 9.6), если на подстанции Б трансформатор T 1 находился в резерве, производят в следующей последовательности: снимают защитные заземления со всех сторон линии W 1; на подстанции Б, а затем на подстанциях А и В включают линейные разъединители; на подстанции А (или на подстанции В, если инструкциями установлен именно такой порядок подачи напряжения на линию) включают выключатель Q 1, выключателем на другой стороне линии включают ее в транзит и проверяют наличие нагрузки. После этого восстанавливают нормальную схему на подстанции Б.
В рассмотренной последовательности операций напряжение сразу подавалось на линию W 1 и трансформатор Т1 подстанции Б включением выключателя на подстанции А.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector