Sanitaryhygiene.ru

Санитары Гигиены
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Плавный пуск электроинструмента в переноске

Плавный пуск электроинструмента в переноске

Сделай сам

Некоторый электроинструмент в силу своих функциональных особенностей не имеет встроенного регулятора оборотов. В этой статье мы доработаем удлинитель таким образом, чтобы подключенный к ней электроинструмент запускался плавно.

Для чего он нужен

Если инструмент не оснащен регулятором оборотов, значит он ему не нужен. Угловая шлифмашина, к примеру, всегда используется при полных оборотах, иначе она становится опасной. Для чего такому электроинструменту плавный пуск? Причин немало, ведь резкий старт двигателя той же шлифмашины или электрофуганка вызывает:

  • выгорание щеток и ламелей ротора;
  • токовый удар в электросети;
  • попытка инструмента вырваться из рук, что небезопасно;
  • сильный пусковой удар шестеренок редуктора друг о друга, вызывающий их быстрый износ.

При плавном же пуске ни токового, ни механического удара не произойдет. Двигатель электроинструмента плавно запустится и выйдет на максимальные обороты.

Выбираем схему

Существует множество схем плавного пуска, постараемся подобрать что-нибудь подходящее и наиболее доступное для нас.

На дискретных элементах

Регулятор, схема которого представлена ниже, собран на симметричном тиристоре (симисторе) КУ208Г и позволяет осуществлять плавный пуск электроинструмента мощностью до 2 кВт.

Плавный пуск электроинструмента в переноске

Сразу после подачи напряжения на схему (тумблер SA1) Конденсатор С1 разряжен, симистор VS1 закрыт и двигатель М не вращается. Далее конденсатор постепенно заряжается через диод VD1 и резистор R2, симистор начинает открываться, но с большой задержкой от начала полуволны сетевого напряжения. На мотор поступает небольшое начальное напряжение, и он запускается на минимальных оборотах.

По мере зарядки конденсатора задержка открывания симистора уменьшается, напряжение на моторе увеличивается, а значит, увеличиваются и обороты. Как только конденсатор зарядится полностью, симметричный тиристор будет открываться в начале каждой полуволны, подавая на двигатель полное сетевое напряжение, и последний выйдет на полные обороты.

Время плавного включения можно регулировать, подбирая емкость конденсатора С1. При указанных номиналах (500 мкФ) инструмент выйдет на рабочий режим примерно через 2-3 сек после включения.

Важно! При мощности электроинструмента более 500 Вт симметричный тиристор необходимо установить на радиатор.

На микросхеме и симисторе

Эта схема собрана на отечественной универсальной микросхеме КР1182ПМ1. С ее помощью можно построить как устройство плавного пуска, так и регулятор напряжения. На схеме, приведенной ниже, микросхема включена в режиме плавного пуска.

Плавный пуск электроинструмента в переноске

Поскольку микросхема имеет относительно малую выходную мощность – до 150 Вт, – то оснащена мощным выходным ключом, в роли которого выступает симметричный тиристор ТС122-20-10, выдерживающий ток до 20 А. Время выхода двигателя на рабочий режим зависит от емкости конденсатора С1. Такая схема сможет работать без радиатора при мощности нагрузки до 1 кВт.

Полезно! При необходимости симистор ТС122-20-10 можно заменить на КУ208Г, но мощность устройства при такой замене упадет вдвое.

Интегральный регулятор

Схема на дискретных элементах достаточно проста и не содержит дефицитных элементов, но она слишком громоздка и ее придется поместить в отдельный корпус, особенно если электроинструмент мощный и потребуется радиатор. В этом плане намного удобнее использовать готовые интегральные блоки плавного пуска. Самый удобный для нас вариант – KRRQD20A.

Плавный пуск электроинструмента в переноске

Компактный интегральный блок плавного пуска (БПП) рассчитан на ток до 20 А и способен коммутировать мощность до 4 кВт. Модуль имеет 2 вывода и включается в разрыв одного из питающих проводов двигателя инструмента. Если оснастить им удлинитель (многие почему то называют его переноской), то электроинструмент, подключенный через него, будет плавно запускаться при нажатии на кнопку включения.

Плавный пуск электроинструмента в переноске

На фото хорошо видно, что модуль предназначен для установки на радиатор, но если мощность электроинструмента не превышает 1 кВт, то радиатор не потребуется.

Важно! Существуют похожие модули с теми же функциями, но имеющие три вывода. Для наших целей они не подходят, поскольку включаются не просто в разрыв питающего провода, а подают напряжение на мотор по отдельной линии.

Плавный пуск электроинструмента в переноске

Схема подключения нанесена прямо на корпусе прибора и очевидно, что его можно использовать, только установив после выключателя в сам электроинструмент. Тоже неплохой вариант, но, во-первых, удлинитель более универсальное решение (можно подключать любой инструмент или даже лампу), а, во-вторых, разбирая инструмент, мы лишаемся гарантийного обслуживания.

Читайте так же:
Розетки выключатели для сруба

Доработка удлинителя

Существует множество вариантов доработки удлинителя. Если нам нужна максимальная нагрузка, то БПП можно выполнить в отдельном корпусе, в качестве которого можно взять ту же розетку, вытряхнув из нее начинку. Если инструмент бытовой и радиатор не нужен, то вполне реально разместить такой модуль прямо в розетке удлинителя.

Плавный пуск электроинструмента в переноске

Полезно! Эту доработанную розетку удобно разместить на одной площадке вместе с розетками, включенными напрямую в сеть. Это делает удлинитель универсальным. Одна розетка с плавным пуском, остальные обычные на 220 В. Ту, которая с плавным, просто запитываем от обычных.

Плавный пуск электроинструмента в переноске

Удлинитель с регулировкой напряжения

Если для работы с угловой шлифмашиной оптимальны максимальные обороты, то некоторые другие электроинструменты удобнее использовать в разных режимах. Если такие инструменты не оснащены собственным регулятором или последний вышел из строя, то можно воспользоваться удлинителем с регулировкой напряжения. Для этого достаточно собрать несложную схему:

Плавный пуск электроинструмента в переноске

Здесь в качестве управляющего элемента используется симистор BTA16, рассчитанный на ток 16 А. Если его установить на радиатор, то регулятор можно использовать с электроинструментом мощностью до 3 кВт. Если радиатора нет, то мощность нагрузки не должна превышать 600 Вт.

Вместо симметричного динистора DB3 можно использовать HT-32, STB120NF10T4, STB80NF10T4, BAT54. Регулировка оборотов производится при помощи переменного резистора сопротивлением 500 кОм желательно с линейной характеристикой.

Такой блок с радиатором и переменным резистором, конечно, в розетку не поместится, поэтому для него понадобится свой корпус. На фото ниже изображен один из вариантов – схема размещена в корпусе вышедшего из строя настенного накладного диммера.

Плавный пуск электроинструмента в переноске

Как мы убедились, оснастить удлинитель схемой плавного пуска совсем несложно – с этим справится каждый, кто знаком с основами электротехники. Да, придется с полчаса повозиться, но зато теперь и инструмент будет жив, и руки целы.

Электрическая переноска: из чего и как сделать

Если вы считаете, что с электрической переноской, или, как ее еще называют, удлинителем, плотно имеют дело только строители, вы ошибаетесь – это изделие достаточно распространено практически везде и пользуется им, можно сказать, каждый. В гараже, дома, на работе и даже на улице, если на то возникает необходимость. В общем, вещь очень полезная в хозяйстве, и приобрести ее можно в любом строительном магазине. Или вообще взять и просто сделать ее своими руками – это не так уж сложно, как может показаться на первый взгляд. Этим мы займемся в данной статье, в которой вместе с сайтом stroisovety.org разберемся с вопросом, как и из чего делается электрическая переноска?

электрическая переноска фото

Электрическая переноска фото

Электрическая переноска: что понадобится

Наверное, я не открою тайну, если скажу, что переноски бывают двух типов – одни из них предназначены для подключения различных электроприборов, а другие для освещения (лампа переноска). В зависимости от этого вам могут понадобиться те или иные разновидности материалов.

  1. Провод – нужен в любом случае. Как для лампы, так и для переноски с розеткой лучше выбрать круглый провод (ПВС), хотя можно использовать и плоский, например ШВВП. ПВС просто немного удобнее для этих целей. Самым важным моментом при выборе электрического кабеля для переноски является выбор его сечения – эта характеристика кабеля в полной мере зависит от будущих нагрузок. Если переноска будет использоваться для подключения электроприборов, то лучше остановиться на сечении провода 2,5 квадрата – с его помощью можно будет подключать как небольшой радиоприемник, так и мощный обогреватель и даже такое оборудование, как стиральные или посудомоечные машины. В общем, для переноски с розеткой лучше использовать более мощный провод, даже если делаете вы ее для подключения маломощного приемника (наверняка в будущем ее назначение поменяется). Что же касается лампы переноски, то здесь такой мощный провод не нужен – вполне будет достаточно провода с максимальным сечением 1,5 квадрата. Если вы делаете светодиодную лампу переноску, то и того меньше – подойдет 0,75 квадрата.
  2. Вилка – также понадобится в любом случае. Таких изделий в магазинах полно, и все они достаточно разные. По их поводу можно сказать только одно – это, опять же, правильный выбор мощности. Их, так же, как и провод, рассчитывают на определенную нагрузку, хотя в последнее время вилки продаются по большей части универсальные и отличаются только наличием или отсутствием заземляющего контакта. Существуют вилки на 6А и на 10А – для света можно использовать первый вариант, а для переносной розетки лучше избрать второй, который в состоянии выдерживать нагрузку от электроприборов мощностью до 2000Вт.

вилка для переноски удлинителя фото

Вилка для переноски удлинителя фото

Как вариант, если речь идет о стационарной переноске светильнике, также можно подумать и о выключателе – в принципе, он лишним не будет и при переносном варианте. В большинстве случаев для самодельных переносок отлично подходит выключатель, устанавливаемый прямо на провод – раньше ими оборудовались шнуры бра.

Розетки для переноски своими руками фото

Розетки для переноски своими руками фото

В принципе это все, что понадобится для самостоятельного изготовления электрической переноски, не считая инструментов. Если говорить о них, то здесь вполне реально обойтись одним ножом и отверткой. Если вы хотите изготовить «вечное» изделие, то придется обзавестись паяльником – с его помощью пропаивают концы проводов. Кроме того, эту операцию лучше осуществлять, если к переноске будет подключаться высокая нагрузка.

Как сделать электрическую переноску своими руками

Вопрос, как сделать электрическую переноску своими руками, решается довольно просто – для профессионального электрика это, как говорится, раз плюнуть и по времени занимает минут пять-десять, не больше. В целом, этот процесс можно представить в виде следующей последовательности.

    Подготавливаем провод. Зачищаем его с обоих концов – сначала снимаем верхнюю изоляцию и освобождаем жилы провода. Много изоляции снимать не нужно – максимум 30-50мм. Потом зачищаем каждую отдельно взятую жилу – оголяем провода примерно на полсантиметра. Так поступаем с каждым из концов электрического провода.

подготовка провода для переноски фото

Подготовка провода для переноски фото

как подключить кабель для переноски фото

Как подключить кабель для переноски фото

Что касается патрона для обычной или светодиодной переноски, то он устанавливается на провод не намного сложнее, чем вилка или розетка. Принцип такой же – разбираем патрон на две части, вытягиваем середину, подключаем к ней концы проводов и собираем все на место. Здесь практически все точно так же, как и в вилке – перед тем как подсоединить провода к сердечнику, не забудьте надеть на провод одну из половинок корпуса патрона.

патрон для лампы переноски фото

Патрон для лампы переноски фото

Как видите, электрическая переноска является отнюдь не сложным изделием. Таким способом можно изготовить переноску любой необходимой вам длины – здесь отмечу, что провод реализуется в бухтах, которые имеют намотку от 100 до 250м. Для длинных переносок понадобится продумать систему намотки – возможно, дополнительно понадобится сделать барабан или какое-либо другое приспособление.

Как устроен сетевой фильтр и что у него внутри?

Как устроен сетевой фильтр и что у него внутри?

Наверняка в каждом доме найдется сетевой фильтр, а может даже не один. При этом мало кто серьезно задумывается, зачем он нужен и какие функции выполняет. В данном материале рассмотрим устройство «безмолвного» защитника и назначение его компонентов.

Зачем нужен сетевой фильтр

Прежде чем начать препарировать сетевой фильтр, нужно определиться с проблематикой. Так ли он нужен и может можно без него обойтись?

Современная квартира полна разной электронной техники, которая подключается к обычной электрической розетке. В розетке как раз и кроется основная угроза для «здоровья» техники. Дело в том, что форма питающего напряжения далека от идеала, известного из учебников физики. Помимо основной, «правильной» синусоиды, в ней присутствует огромное количество различных помех, наводок и возмущений, оказывающих негативное влияние на работу электронных компонентов устройств. Природа этих помех многогранна, но, если коротко, то основные причины кроются в следующем:

  • работа импульсных преобразователей и блоков питания, дающих часть «шума» в общую сеть;
  • неравномерность нагрузки общей системы электроснабжения, в которой то и дело включают мощных потребителей (электродвигатели; сварочные трансформаторы, микроволновки и т. д.);
  • природные явления, в частности грозы, вызывающие в проводниках электросети импульсы высокого напряжения;
  • нелинейность нагрузки, что приводит к некоторой разбалансировке питающих сетей, в результате чего между фазным и нейтральным проводом возникают токи высоких гармоник, существенно искажающих эталонную синусоиду как по форме, так и по величине.

Если подойти к решению вопроса по созданию комфортных условий для работы техники кардинально, то наилучшим решением будет установка на ввод электропитания в жилище стабилизатора и фильтров помех. Но такое решение громоздко и достаточно дорого. Компромиссом являются сетевые фильтры для бытовой техники. В них удачно сочетаются невысокая стоимость и необходимый уровень защиты.

Устройство сетевого фильтра

В зависимости от комплектации и ценовой категории сетевого фильтра, в нем могут быть установлены различные компоненты, являющиеся элементами тех или иных видов защиты. На данном этапе познакомимся с максимальной комплектацией сетевого фильтра.

Итак, «правильный» сетевой фильтр должен содержать в своем составе следующие элементы.

Кнопка включения

Подает питающее напряжение на группу розеток. Функционал достаточно простой — банальное включение и отключение напряжения для всех устройств, подключенных к фильтру. Может совмещать в себе функции предохранителя, вызывая обесточивание розеток при необходимости.

Если нужна более гибкая конфигурация фильтра — есть модели с индивидуальными кнопками для каждой розетки.

С точки зрения безопасности наиболее правильными считаются широкие кнопки, одновременно размыкающие линейный и нейтральный проводники. Так фаза никогда не появится на контактах при отключенной кнопке.

Предохранитель

Основная задача предохранителя — защита питающей сети от коротких замыканий в цепях потребителей, а также отключение устройств при превышении расчетной мощности, на которую спроектирован сетевой фильтр. Значения мощности и допустимого тока указываются на информационной табличке, нанесенной на корпус устройства.

Предохранитель состоит из биметаллической пластинки, разрывающей цепь питания при превышении заданной температуры, обусловленной протеканием по цепям токов больших величин. Восстановить цепь можно спустя некоторое время, необходимое для отключения неисправного устройства и остывания биметаллической пластины, просто нажав на кнопку предохранителя.

Варистор

Варистор выполняет в устройстве функцию защиты от импульсного (кратковременного) перенапряжения, вызванного помехами или грозовыми разрядами.

Физически он представляет собой переменный резистор, сопротивление которого резко меняется при достижении определенного порогового значения напряжения. Причем чем выше напряжение порогового значения, тем меньше сопротивление элемента. Таким образом, при прохождении импульса высокого напряжения, варистор шунтирует цепь и вызывает срабатывание предохранителя. При этом, как правило, элемент приходит в негодность.

Конденсатор

Основная задача конденсатора — отсечь от нагрузки высокочастотную помеху, возникающую между фазным и нейтральным проводниками, и вернуть ее обратно в сеть, поскольку он является прекрасным проводником сигналов высокой частоты.

Как правило, для защиты используются конденсаторы, рассчитанные на работу с напряжением питающей сети до 250 В и способные «пережить» кратковременный его всплеск до 2,5 кВ. Обычно емкость используемых конденсаторов находится в диапазоне от 0,1 мкФ до 1 мкФ.

Дроссель

Из курса электротехники известно, что с ростом частоты растет и реактивное сопротивление катушки индуктивности. Она просто не способна пропустить через себя высокочастотные помехи, поскольку они в ней, что называется, «вязнут» и преобразовываются в тепло. Если катушка намотана на ферритовый сердечник, то ее способность противостоять высокочастотным помехам только усиливается.

Свойства дросселя и конденсатора нашли широкое применение в борьбе с помехами высокой частоты, а именно в LC-фильтрах, являющихся недорогим и достаточно эффективным способом противостояния паразитным возмущениям.

Катушка за счет своего индуктивного сопротивления не пропускает к розеткам фильтра высокочастотные помехи, зато их хорошо проводит конденсатор, возвращая их обратно в сеть.

Как работает сетевой фильтр

Работа сетевого фильтра в плане «очистки» от помех и импульсов высокого напряжения наглядно показана на схеме.

В итоге, «грязное» напряжение, пройдя последовательно через функциональные блоки сетевого фильтра, очищается от помех и попадает на сетевые розетки устройства с пригодными для работы подключенных потребителей параметрами.

Установка автомата в щиток

Если вы уже выбрали и приобрели автоматический выключатель с правильным количеством полюсов, номиналом, максимальным рабочим током и отключающей способностью, самое время уяснить, как подключить автомат в щитке. На первый взгляд, не так уж просто совершить ошибку в монтаже простого однополюсного АВ. Вроде бы достаточно сделать правильную зачистку кабеля и вставить в клеммы, после чего винтами затянуть. Но профессиональные электрики не только в подробностях знают, как подключить автомат, они еще и обращают внимание на поддержание порядка и определенную “эстетику” подключения.

монтаж автомата в распредщит

Если подключение автоматов в щитке выполнено по правилам, на устройства приятно смотреть, а при необходимости профилактических или ремонтных мероприятий будет обеспечена максимальная безопасность. Начнем с того, как правильно подключить автоматы в электрическом щите.

Откуда подводить питание — сверху или снизу?

В любом АВ имеется два контакта: неподвижный и подвижный. Куда подключать питание? До сих пор мнения интернет-экспертов в сфере электрики разделяются, одни на форумах твердят, что подключать следует к верхнему контакту, другие считают, что наоборот. В нормативе ПУЭ (7 изд. п.3.1.6) говорится:

При одностороннем питании подсоединение питающего проводника к аппарату защиты делается, как правило, к неподвижным контактам.

Аппаратом защиты считайте не только автоматический выключатель, но и устройство защитного отключения, дифференциальные автоматы и другие защитные приборы. Из формулировки ПУЭ следует вывод, что питающий кабель или провод должен подходить к неподвижному контакту, но можно сделать исключение.

неподвижный контакт в АВ

На передней панели АВ есть схема, из которой вы поймете, где располагается неподвижный контакт. А на следующем фото вы можете видеть, как выглядит защитный аппарат в разрезе, и где какие клеммы размещены. Практически все отечественные и импортные производители ставят неподвижные контакты сверху, и туда же Правила Устройства Электроустановок советуют подводить питание. Сейчас нет никаких гарантий, что в дешевых китайских моделях неподвижный контакт расположен сверху, хотя в советское время условие соблюдалось строго.

клемма неподвижного контакта автомата

С технической точки зрения может возникнуть вопрос: а если пропустить рекомендации ПУЭ, как подключить автомат, и подвести питание снизу? Будет ли это грубой ошибкой? В процессе работы АВ находящиеся внутри тепловой и электромагнитный расцепители срабатывают при наличии сверхтоков, защищая линию от КЗ и перегрузок. Так вот и верхнее, и нижнее подведение питания не влияет на главную функцию автоматического выключателя. Расцепители работают эффективно и независимо от порядка питания клемм.

Модульные защитные аппараты знаменитых брендов (Hager и ABB, к примеру) дают пользователям возможность подводить питание к нижним клеммам. В таких устройствах есть зажимы под гребенчатые шины снизу.

На практике же верхние неподвижные контакты автоматов — более корректное решение для подключения питания. Это обеспечивает правильную организацию, ведь когда электрик приступает к работе в щитке, он считает, что фаза на автоматах находится сверху, опираясь на теорию из ПУЭ. При замене или добавлении автоматов может случиться опасная ситуация, если фаза подключена к нижним контактам, а новый мастер по привычке отключает автомат в щитке и полагает, что нижние клеммы отсечены от напряжения.

Если брать пример с промышленных объектов, то рубильники РБ никогда не подключают “вниз головой”. Питание идет только со стороны верхних клемм, и отключение рубильника приводит к отсечению напряжения с нижних контактов. Это большой плюс к безопасности.

Как подключить АВ по схеме

Предлагаем схематические примеры подключения АВ в распределительном щитке.

схема подключения автоматов в щитке

схема подключения автоматических выключателей 2

схема подключения автоматов в щитке 3

Обратите внимание, что каждая схема подключения автоматов в щитке предполагает разделение на группы по селективности снабжения. Модульные устройства разделены на розеточные группы и на линии освещения, иногда отдельно выносится защита для особо мощных потребителей. В идеале для безопасности и красоты по бокам шины устанавливаю заглушки, чтобы контакты прикрывались изоляцией. Ограничители на DIN-рейку помогут визуально разделить группы автоматов и обеспечить теплоотвод, поскольку приборы при эксплуатации и близком размещении греются, а также ограничители надежно зафиксируют сами приборы. Отдельную группу, как правило, выделяют гребенкой и лишь к одному АВ из группы подводят питание.

ограничители для автоматов

Как закрепить модуль удобнее

Если в перспективе сеть будет расширяться, а количество АВ соответственно расти, то рекомендуем крепить защиту на DIN-реку на две подвижные защелки вместо одной. Почему так? Потому что при заменен прибора на одной защелке потребуется полностью разбирать щиток. Автоматы с парой подвижных защелок как раз решают эту проблему в пользу быстрого и простого монтажа/демонтажа. Понадобится несколько минут времени и отвертка.

автомат с подвижными защелками

Как избежать главных ошибок с проводкой

Очень важно выполнять подключение автоматов в щитке своими руками с пониманием функционирования проводов. Как избежать самых распространенных ошибок для надежности контактов? Начнем по порядку.

ввод провода в автомат

  1. Чтобы получить качественный контакт, надо зачистить жилу, то есть снять часть изоляции с провода. Если изоляция зачищена недостаточно, то она попадет под контактный зажим, а это чревато оплавлением проводки, самого устройства защиты и даже появляется риск пожара. Следите и проверяйте степень затягивания проводника в гнезде.
  2. Жилы неодинакового сечения нельзя подсоединять к одной клемме. Гребенчатая шина превосходно справляется с подключением группы автоматов к одному питающему проводу. Но когда электрик отдает предпочтение самодельной перемычке из кабельных жил, безопасный результат получится только при использовании проводов одинакового сечения. В противном случае, когда затянутся контакты, зажим получится неравномерным (тонкая жила будет обжата хуже, что приведет к расшатыванию контакта, нагреванию, искрению и оплавлению изоляции), кроме того, площадка автомата деформируется в сторону меньшего сечения.соединение автоматов перемычками
  3. Если подводите к автомату кабель с монолитной жилой, загните его конец крючком. Это мероприятие можно назвать созданием U-образного загиба и благодаря такому простому шагу вы увеличите площадь соприкосновения провода с поверхностью зажима. Это дополнительный плюс к надежности контактов.загиб на проводе
  4. При подключении многожильного гибкого провода его надо оконцевать перед подключением к АВ. Мы рекомендуем для оконцевания использовать НШВИ (наконечники штыревые втулочные изолированные) или наконечники НШВ. Двойной НШВИ-2 берут для подсоединения пары многожильных проводов, это удобный способ формировать перемычки для групп автоматических выключателей.
  5. Паять и облуживать концы многожильных проводов категорически не советуем, поскольку это верный путь к “расплыванию” соединения со временем, перегреву и расплавлению припоя, ослаблению и выгоранию контакта.

Полезные видео

Еще больше информации о том, как поставить автомат в щиток, вы найдете в видеороликах.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector