Sanitaryhygiene.ru

Санитары Гигиены
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

3d-принтер и ЧПУ станок в одном устройстве своими руками

3d-принтер и ЧПУ станок в одном устройстве своими руками

Блог для тех, у кого чешутся руки и есть желание заниматься цифровой техникой и не только цифровой и не только техникой.

Страницы

  • Главная страница
  • Содержание
  • STM32

суббота, 2 апреля 2016 г.

13. Концевики, самодиагностика, установка нулевых точек

Как и обещал в прошлой статье, выкладываю код программы для самодиагностики и установки ну л евых точек по датчикам . К стати забыл рассказать о датчиках (концевиках). В качестве концевико в я применил кноп ки от старых компьютерных мышек . Подключил их по схеме на рисунке ниже . Подтягивающий резистор имеет номинал 10 кОм.

Эти кнопки достаточно миниатю рны и имеют огромный ресурс — цикл нажатий . Как и любые другие кнопки они не лишены недостатк ов — так называемого дребезга . Как я с ним борюсь? Да никак. Только в параллель кнопке впаял конденсатор на 1 мкФ .

Код программы в среде Arduino IDE:

// Количество шагов в одном обороте шпинделя
#define STEPS_X 200
#define STEPS_Y 200
#define STEPS_Z 51

// Скорость вра щ ения ШД
#define XSpeed 300
#define YSpeed 300
#define ZSpeed 200

// Выводы для управления ШД по оси Y
#define Xa 23
#define Xb 25
#define Xc 27
#define Xd 29

#define Ya 31
#define Yb 33
#define Yc 35
#define Yd 37

#define Za 39
#define Zb 41
#define Zc 43
#define Zd 45

// Флаги прерываний по осям
volatile boolean F_Nul_X = 0;
volatile boolean F_Nul_Y = 0;
volatile boolean F_Nul_Z = 0;

// Флаги пройденных тестов
int F_Test_XYZ =0;

boolean F_Test_X = 0;
boolean F_Test2_X = 0;

boolean F_Test_Y = 0;
boolean F_Test2_Y = 0;

boolean F_Test_Z = 0;
boolean F_Test2_Z = 0;

Stepper stepperX(STEPS_X, Xa, Xb, Xc, Xd);
Stepper stepperY(STEPS_Y, Ya, Yb, Yc, Yd);
Stepper stepperZ(STEPS_Z, Za, Zb, Zc, Zd);

void setup() <
stepperX.setSpeed(XSpeed);
stepperY.setSpeed(YSpeed);
stepperZ.setSpeed(ZSpeed);

attachInterrupt(2, X_stop, RISING); // инициализ а ция прерываний
attachInterrupt(3, Y_stop, RISING); //
attachInterrupt(4, Z_stop, RISING); //

void loop() <
// Проводим прогон и устанавливаем в нулевое положение все оси
if (F_Test_XYZ == 0) <
X_null();
if (F_Test_X == 1 && F_Test2_X ==1) <
stepperX.step(400);
Atermo(Xa, Xb, Xc, Xd);
F_Test_XYZ = 1;
delay(2000); //Задержка-спецэфект 🙂
>
>
if (F_Test_XYZ == 1) <
Y_null();
if (F_Test_Y == 1 && F_Test2_Y ==1) <
stepperY.step(400);
Atermo(Ya, Yb, Yc, Yd);
F_Test_XYZ = 2;
delay(2000); //Задержка-спецэфект 🙂
>
>
if (F_Test_XYZ == 2) <
Z_null();
if (F_Test_Z == 1 && F_Test2_Z ==1) <
stepperZ.step(-102);
Atermo(Za, Zb, Zc, Zd);
F_Test_XYZ = 3;
delay(2000); //Задержка-спецэфект 🙂
>
>
>

// Защита от перегрева ШД по осям
void Atermo(int A, int B, int C, int D) <
digitalWrite(A, LOW); //
digitalWrite(B, LOW); // Устанавливаем 0 по всем
digitalWrite(C, LOW); // входам управления ШД
digitalWrite(D, LOW); //
>

void Y_stop() <
F_Nul_Y = 1;
>

void Z_stop() <
F_Nul_Z = 1;
>

Видеоролик демонстрирует выполнение кода .

Шилд RAMPS 1.4 подключение к Arduino Mega

Рассмотрим подключение платы Shield-RAMPS-1.4 на примере 3D принтера Mendel90.

Плата расширения RAMPS 1.4 для Arduino Mega

RAMPS 1.4 это шилд (надстройка) для Arduino Mega 2560. Ардуино преобразует G-коды в сигналы и управляет 3D принтером посредством силовой части — RAMPS 1.4.

Плата RAMPS 1.4 одевается поверх Arduino и все подключения, кроме USB, осуществляются через неё. Питание 12В на Arduino подаётся через RAMPS 1.4.

Двухэкструдерная схема подключения

Шилд RAMPS 1.4 подключение

Схема подключения с одним экструдером

Шилд RAMPS 1.4 подключение

Обычно используют билинейные (четыре провода) шаговые двигатели на 1,7 А типоразмера Nema 17. Провода желательно свить в косички для защиты от наводок.

Читайте так же:
Поплавковый выключатель pvc 1mt

Шаговые двигатели для оси Z можно подключать двумя способами:

  • Первый способ.
    Параллельное подключение пары шаговых двигателей на одну ось Z — это когда штекер каждого шагового двигателя подключается к своему индивидуальному разъему на плате RAMPS 1.4.
    Такой способ подключения шаговых двигателей для оси Z является стандартным подключением к плате RAMPS 1.4.
    Следует заметить, что при параллельном (стандартном) подключении могут возникать проблемы с рассинхронизацией шаговых двигателей, если будет иметь место разница в сопротивлении обмоток у подключаемой пары шаговых двигателей.
  • Второй способ.
    Второй способ это подключить шаговые двигатели последовательно одним штекером по схеме показанной ниже.
    При таком последовательном подключении двух шаговых двигателей по оси Z проблем с рассогласованием пары движков уже не будет наблюдаться.

Питание на RAMPS 1.4 подаётся от блока питания 12В 30А.

Подключение концевых выключателей

На плате ramps предусмотрено шесть разъемов для подключения концевых выключателей, их порядок следующий: X min, X max, Y min, Y max, Z min, Z max. Подключать концевики нужно соблюдая полярность. Если смотреть на разъемы концевиков со стороны разъемов питания RAMPS, то порядок пинов будет следующий: Signal, GND, +5 В.

Подключение термисторов RAMPS поддерживает три датчика температуры, разъемы для них подписаны — T0, T1, T2. В T0 подключают термистор хотэнда, а в T1 термистор нагревательного стола. Полярность у термисторов отсутствует. T2 служит для термистора второго хотэнда.

На плату могут быть установлены драйверы шаговых двигателей типа A4988 с минимальным микрошагом 1/16 или Drv8825 с минимальным микрошагом 1/32
Прежде чем установить драйвера, необходимо выставить микрошаг драйвера, установив необходимую комбинацию джамперов, на разъеме, который находится под соответствующем драйвером.

Если используется драйвер A4988, то расположение перемычки будет таким:

Если используется драйвер Drv8825, то расположение перемычки будет таким:

Подключение нагревательного стола и нагрева хотэнда

Разъемы для подключения нагревательных элементов обозначены D8, D9, D10. В D8 подключают нагревательный стол, а в D10 подключается нагрев хотэнда. В D9 подключают вентилятор для программной регулировки обдува печатающихся деталей, либо нагрев второго хотэнда (в зависимости от того, что указать в прошивке).

Подключение LCD дисплея

На плате Ramps есть специальный разъем для подключения дисплея, поэтому подключить любой LCD дисплей не составит труда.

Шилд Shield-RAMPS-1.4 — одна из самых распространённых плат для сборки 3D принтеров.

Нажать и посмотреть схему RAMPS 1.4

Эта «материнская» плата позволит Вам без проблем коммутировать все комплектующие воедино.

Промышленные концевые выключатели: описание и применение

Концевой выключатель является электрическим устройством, которое применяется в управленческих системах как датчик, формирующий сигнал в момент появления механического контакта подвижных механизмов. Какое у него устройство, каков его принцип работы и правила подключения? Об этом и другом далее.

Принцип работы

Концевой выключатель или концевик является устройством, которое подает команду или лично размыкает/замыкает электроцепь исполнительного механизма. Сигнал для командной подачи — внешний вид воздействия подвижной детали на выключатель. Он призван автоматизировать управление и освободить людей от того, чтобы они выполняли однотипные и примитивные действия. В этом заключается цель его работы.

Концевой выключатель как самое распространенное оборудование

Внешне он является самостоятельным компактным прибором, устанавливаемым в управляемом механизме. Это не считается начальной или конечной точкой пути. Для того чтобы воздействовать на концевик, могут быть применены детали, которые располагаются на любом месте в шкафу. Нередко обеспечение движения происходит одним и тем же выключателем, который контактирует с подвижным узлом.

Обратите внимание! Концевик подает или отключает напряжение по положению. Он может оказывать как прямое механическое действие или косвенное действие. Так, он может создавать толчок с касанием или нажатием или же ультразвук с инфракрасным излучением.

Читайте так же:
Трехфазный автоматический выключатель схема подключения

Схематическое устройство концевого выключателя

Типы и применение

Концевик бывает защитным или функциональным. Первый используется, для того чтобы активировать движение вниз, а второй — регулярно включать и отключать свет или подобные предметы. Обе разновидности активно применяются в строительстве, машиностроении, металлургии и производственной автоматизированной сфере.

Также стоит указать, что он бывает роликовым, рычаговым, поплавковым и кнопочным. Есть микровыключатели, сфера применения которых это электроника и бытовые приборы.

Сфера применения оборудования

Механические

Механические или контактные проводники — те, которые работают в момент непосредственного воздействия на штырь с кнопкой, колесиком или рычажком. Подает сигнал управления с предупреждением. Серьезным недостатком каждой такой разновидности является подгорание с контактным залипанием во время многократного включения и выключения.

Механический тип бывает кнопочным, роликовым и рычажным. Применяется в производственном и металлургическом цеху, машинной и строительной сфере. Оснащен резиновым уплотнителем и замыкающими/размыкающими контактами.

Механическая разновидность как одна из самых распространенных

Кнопочные

Кнопочные проводники используются, для того чтобы включать освещение или другие электротехнические приборы воздействием на кнопку. Воздействие может быть как нажатием кнопки, так и нажатием удлиненного штока. Установка их занимает непродолжительное время.

Роликовые

Выключатели, являющиеся электромеханическими приборами, созданные для управления объектами. Широко распространены в промышленной и бытовой сфере. Подобные устройства работают не благодаря электроимпульсу, а благодаря механическому воздействию на ролик. В момент усилия, замыкается или размыкается контакт, и подается сигнал управляющего или сигнализирующего типа. Применяются подобные изделия в металлургии, строительстве и машиностроении.

Обратите внимание! Чаще всего, они снабжаются замыкающими и размыкающимися контактами, резиновыми уплотнителями.

Роликовая разновидность как просто подключаемая модель

Рычажные

Концевики, работающие благодаря исполнительному механизму или двери. Имеют схожий принцип работы, как у кнопочных моделей. Главным отличием является наличие рычажка, соединяемого с подвижной частью контактов. Стоит указать, что подобным образом работают поплавковые и ползунковые модели.

Бесконтактные

Концевики, срабатывающие в момент приближения какого-либо предмета в определенной зоне. Созданы в противовес механическому типу и относится к совершенным моделям. Функционируют благодаря транзисторным ключам, обладающим малым сопротивлением. Бесконтактные модели бывают емкостными, индуктивными, оптическими и ультразвуковыми.

Бесконтактная современная модель

Емкостные

Концевики, которые взаимодействуют с людьми. В момент приближения человека, создается электрическая емкость, благодаря которой действует мультивибратор. Чем ближе человек, тем больше емкость и меньше импульсная частота. Такой элемент имеет большую чувствительность.

Обратите внимание! Основная функция лежит на пластине, плотно присоединенной к части конденсатора.

Индуктивные

Электронные бесконтактные выключатели, которые реагируют на момент передвижения магнита. В зависимости от оснащения металлического или немагнитного сердечника в датчике, вырабатываются электроимпульсы, благодаря которым закрывается или открывается ключ.

Индуктивная модель как одна из классических

Оптические

Концевики, оснащенные инфракрасным светодиодом и особым транзистором, которые улавливают сигнал. Фототранзистор работает, вне зависимости от того, какое освещение. В момент прерывания светодиодного луча фотоэлемент закрывается. Так выключается исполнительный механизм, где он подключается.

Концевые выключатели, оснащенные при помощи инфракрасного светодиода и специального транзистора, которые улавливают фототранзистор.

Ультразвуковые

Концевики, оснащенные кварцевыми звуковыми излучающими элементами. Также применяются датчики движения с объемом. Изменяется амплитуда звука, когда в радиусе работы появляются кварцевые звукоэлементы.

Простота работы с ультразвуковой моделью

Магнитные

Проводники, активирующиеся в момент приближения определенной пространственной точки. Настроены на магнит, который входит в конструкцию движущегося механизма. Имеют один или несколько ферромагнетичных контактов. При приближении магнита, контакты замыкаются, и подается сигнал об этом в схему управления. Основное преимущество подобного устройства в полном отсутствии механического действия и заметном повышении срока службы. Создается каждый магнитный концевик в корпусе стекла или пластика.

Читайте так же:
Характеристики автоматического выключателя дэк

Обратите внимание! Обладает миниатюрными габаритами.

Автомобильные

Концевики, применяемые в сигнализации с освещением. Относятся к механической модели, поскольку обладает тем же принципом работы. По конструкции имеют один выход с подключаемым положительным потенциалом и отрицательную клемму — корпус, который зажимается к металлическому кузову. При этом необходимо, чтобы концевики были защищены от краски.

Шпиндельные

Концевики, ограничивающие механизм движения, использующийся как путевой выключатель. Могут быть применены там, где есть вращение вала. Благодаря вращающимся механизмам, переключается контактная группа ограничителя входа, вращающегося вала или путевого выключателя циклического управления.

Шпиндельная модель как наиболее просто работающая

Пневматические

Проводники, реагирующие на системное давление, которые останавливает подачу воздуха с каким-либо газом. Устройства, останавливающие сжатый воздух или другой газ благодаря нажатию управляющей кнопки или рычага. При этом есть разновидности, срабатывающие в момент достижения конкретного системного давления.

Правила подключения

Несмотря на достаточно простую конструкцию концевых выключателей, они используются в электрооборудовании, где есть сложные электрические цепи. В итоге, подключать их должны специалисты, умеющие работать с принципиальным схемами подключения концевых выключателей. Подключение датчика происходит двумя проводами, красным и черным. Первый находится под напряжением, второй без него. Установлены они в цепи так, как указано на схеме.

При срабатывании прибора создается щелчок. Индикаторный вид выключателя подключается так же, как и обычный механический. Есть еще третий провод зеленого цвета. О том, что сработал выключатель, будет сигнализировать светодиод со щелчком.

Обратите внимание! Сбой работы может происходит из-за запыленности с солнечным светом. Если сработает оптическая пара, то включится светоизлучающий диод.

Специфика подключения оборудования

Маркировка концевых выключателей

Каждое коммутирующее устройство обладает своей маркировкой. Если его расшифровать, то можно заполучить всю информацию о том, как работает конкретный концевой выключатель. Первые две цифры выключателя это буквенное обозначение, вторые две — номер серии, следующая — исполнение.

Следующие две цифры являются контактами, последующие — исполнением рабочих элементов и степенью защиты. Последние две цифры считаются климатическим исполнением и категорией применения. Как правило, кроме маркировки, каждое изделие имеет указание гарантии качества и производителя. Нередко эти данные прописываются рядом с маркировкой.

Таблица маркировки концевых выключателей

В целом, концевой выключатель является электротехническим прибором, который предназначен, чтобы размыкать и замыкать рабочую электроцепь. Бывает механическим, кнопочным, роликовым, рычажным, бесконтактным, емкостным, индуктивным, оптическим, ультразвуковым, магнитным, автомобильным, шпиндельным и пневматическим. Подключается по специальным электросхемам, основываясь на имеющихся технических особенностях. Имеет специальную маркировку, в зависимости от вида и применения.

Подключение электроники к плате MKS Gen V1.4

Универсальная плата MKS GEN v1.4 была разработана для управления 3D-принтером. Создана на основе популярного решения – связки платы Arduino Mega 2560 и платы расширения Ramps 1.4, широко используемой для принтеров проекта RepRap.

Обзор платы MKS GEN v1.4

Универсальная плата MKS GEN v1.4 была разработана для управления 3D-принтером. Создана на основе популярного решения – связки платы Arduino Mega 2560 и платы расширения Ramps 1.4, широко используемой для принтеров проекта RepRap. Плата оснащена 8 битным микроконтроллером ATmega2560, имеет 5 слотов для подключения драйверов шаговых двигателей, возможность подключения питания 12-24 В. Плата MKS GEN 1.4 поддерживает все прошивки Arduino, установка которых проходит в аналогичном порядке. МКС GEN имеет ряд преимуществ, по сравнению с другими платами, о которых мы расскажем Вам далее.

Читайте так же:
Что такое полное время отключения выключателя

Технические характеристики платы MKS GEN V1.4

  • 8 битный микроконтроллер ATmega2560;
  • Напряжение питания 12 — 24 В;
  • Возможность подключения до 5 драйверов ШД с простой настройкой микрошага (микропереключатели). 3 шаговых двигателя на оси X,Y ,Z и 2 экструдера Е0, Е1;
  • Поддержка основных драйверов ШД: A4988, DRV8825, TMC2100, LV8729 и др.;
  • Возможность подключения до 3 термисторов ( например: 1 — для нагревательного стола, 2 — для первого экструдера, 3 — для второго экструдера );
  • Шесть 3-х пиновых разъёмов для концевых выключателей Xmin / Xmax / Ymin / Ymax / Zmin / Zmax;
  • Наличие разъема под LCD дисплеи + SD карты;
  • Дополнительные пины для обвязки 3D принтера: AUX-1, AUX-2, AUX-3, Servos1 ( так же как и на Ramps 1.4 );
  • 4 мощных MOSFET для питания нагрев. стола, двух экструдеров и вентилятора;
  • 3 дополнительных выхода питания 3 В и 12-24 В ( в зависимости какое питание подали на плату );

Подключение Gen V1.4

Ниже мы покажем схему подключения обвязки 3D принтера к плате управления MKS GEN, остановимся на каждом пункте и более подробно опишем процесс подключения всех элементов.

Общая схема подключения периферии MKS GEN 1.4

Подключение драйверов шаговых двигателей

Чтобы шаговыми двигателями можно было управлять, нужно поставить по одному драйверу на каждую ось и один драйвер на экструдер. Для этих целей на плате MKS Gen v1.4 существует пять разъемов для подключения драйверов

Прежде чем установить драйвера шаговых двигателей, необходимо выставить микрошаг драйвера. Для установки микрошага драйвера используете джампера (перемычками), которые обычно идут в комплекте вместе с МКС GEN.

Перемычки установки микрошага на GEN v1.4 находятся под драйверами шаговых двигателей. Всего под каждый драйвер можно установить максимум три перемычки. В зависимости от того, сколько и в каком порядке вы их поставили, будет определяться, какой шаг выставлен.

Если вы используете драйвер шагового двигателя A4988 с минимальным микрошагом 1/16, то расположение перемычки берем исходя из таблицы:

123
нетнетнетполный шаг
данетнет1/2 шага
нетданет1/4 шага
даданет1/8 шага
дадада1/16 шага

Большинство использует микрошаг 1/16 (все перемычки установлены), поэтому прежде чем устанавливать драйвера, устанавливаем все перемычки под все драйвера!

Если вы используете драйвер шагового двигателя Drv8825 с минимальным микрошагом 1/32, то расположение перемычек берем исходя из таблицы:

123
нетнетнетполный шаг
данетнет1/2 шага
нетданет1/4 шага
даданет1/8 шага
нетнетда1/16 шага
данетда1/32 шага
нетдада1/32 шага
дадада1/32 шага

Обратите внимание! На драйвере шагового двигателя DRV8825 подстроечный резистор располагается на другой стороне платы, по сравнению с A4988, поэтому обратите внимание на правильную ориентацию драйвера при установке их в разъемы плат управления.

После того, как все перемычки поставлены, можно приступать к установке драйверов. В нашем случае драйвера будут A4988. Необходимо сразу прикрепить на каждый драйвер алюминиевый радиатор, это можно сделать с помощью термоклея или двухстороннего скотча (чаще всего на радиаторах уже наклеен двусторонний скотч).

Установка радиаторов на драйверы шагового двигателя

Драйвер устанавливается строго в одном положении — подстроечным резистором в противоположную сторону от разъема питания (маркировка ножек драйвера должна совпасть с маркировкой на плате). Радиаторы не должны касаться ножек подстроечного резистора!

Подключение шаговых двигателей к MKS GEN V1.4

На плате есть 5 разъемов для подключения шаговых двигателей и соответственно 5 разъемов для драйверов. Каждая ось подписана (X, Y, Z, E0, E1), что позволяет безошибочно подключить в соответствующий разъем. Пины одного разъема идут по порядку и соответствуют обмоткам шагового двигателя : 1 и 2 пин — одна обмотка ШД; 3 и 4 пин другая обмотка ШД. По сути особо разницы нет, какая именно обмотка будет подключена в первые пины, а какая в следующие.

Подключение концевых выключателей

На плате GEN предусмотрено шесть разъемов для подключения концевых выключателей, их порядок следующий: X min, X max, Y min, Y max, Z min, Z max. Подключая концевики, необходимо соблюдая полярность.

Обратите внимание! При подключении концевых выключаталей, самое главное не перепутать пины, то есть необходимо на концевом выключателе определить, какой из трех проводов отвечает за «Signal», «-» и за «+» и подключить в соответствующие пины на плате GEN. Если вы перепутаете, то велика вероятность, что при срабатывании концевика, плата выйдет из строя. Обычно на концевых выключателях идет следующая маркировка:

  • зеленый цвет — «Signal»
  • черный цвет — «—»
  • красный цвет — «+»

Также широко распространены 2-х проводные механические концевики, в данном случае «+» на плате MKS GEN v1.4 не используем и подключаем следующим образом:

  1. Соедините контакт помеченный на плате»S» с контактом «NC» микропереключателя.
  2. Соедините контакт помеченный на плате «GND» или «-» с контактом «C» микропереключателя.

Подключение термисторов

На плате GEN предусмотрено разъемы под 3 термистора. В первый разъём-T0 подключают термистор хотэнда, а в T1 термистор нагревательного стола. Полярность у термисторов отсутствует, поэтому подключаем как хотим. T2 служит для термистора второго хотэнда, если у вас один хотэнд, тогда его не трогаем.

Подключение термисторов

Подключение к MKS GEN нагревательного стола и нагрева хотэнда

Разъемы для подключения "силовых" элементов обозначены как HE1, HE0, FAN и H-BED. В H-BED подключают нагревательный стол, а в HE0 подключается нагрев хотэнда. Так же если у вас есть обдув рабочей зоны, то можете его подключить в "FAN" и у Вас останется один свободный разъем под второй экструдер.

Подключение к MKS GEN нагревательного стола и нагрева хотенда

Подключение LCD дисплея к MKS GEN

На плате есть специальный разъем для подключения дисплея, поэтому подключить любой LCD дисплей не составит труда. В качестве примера возьмем дисплей RepRapDiscount Smart Controller.

Подключение LCD дисплея к MKS GEN

Необходимо взять два шлейфа и ими соединить между собой дисплей и GEN в соответствующие разъемы (на дисплее и на плате они подписаны как EXP1 и EXP2). Дисплей готов к работе.

Обратите внимание! Зачастую при дальнейшем использовании вашего дисплея, на экране будут появляться «иероглифы», непонятные символы и тому подобное, для предотвращения этого можно сделать следующее:

  • дисплей крепить к корпусу не на металлические стойки, а нейлоновые (или на другие виды, кроме металла);
  • заземлить все платы;
  • перевернуть сетевую вилку;
  • подключиться к другой розетке;
  • и самое главное, каждый провод, идущий от дисплея к плате ramps, обернуть алюминиевой фольгой (фольги не жалеть!).

Подключение питания MKS GEN v1.4

Для подачи питания в плату предусмотрено один разъем ( в отличии от ramps 1.4 ). Можно подключить источник питания как 12 В, так и 24 В.

Подключение питания MKS GEN v1.4

Обратите внимание! При подключении питания, не перепутайте «+» с «-», лишний раз лучше перепроверить!

Заключение

После того как все собрали и перепроверили, можно приступать к прошивке платы. Так как плата MKS Gen v1.4 это тоже самое, что и связка Arduino mega 2560+ramps 1.4, то прошивка будет идентичная.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector