Sanitaryhygiene.ru

Санитары Гигиены
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Часть 2. Классификация и характеристики

Часть 2. Классификация и характеристики

1. Лампы накаливания.
Классическая лампочка накаливания выглядит как сферический стеклянный шар из силикатного стекла (колба), внутри лампы находится вольфрамовая нить, при этом в полости лампы создан вакуум.
Принцип работы сводится к тому, что при прохождении электрического тока электроны разогревают вольфрамовую спираль и возникает электромагнитное тепловое излучение с эффектом свечения.
Средний КПД у таких ламп составляет около 6-8% в частности, КПД зависит от длины волны выпускаемого света, а она — от температуры нити накаливания, которая ограничена у обычных ламп.
Недостатком данных ламп является затуманивание колбы вследствие оседания вольфрама, вырвавшегося с поверхности нити накаливания лампы при высоких температурах.
Значительная длина нити накаливания лампы усложняет задачу фокусировки пучка света отражателем фары, что ограничивает видимость на дороге.
Некоторые разновидности ламп накаливания выпускались со сдвоенно спиралью.Маркировка таких ламп производится с использованием индекса R2.
Обычные классические лампочки хоть и пользовались до недавнего времени достаточно широкой популярностью, но, к сожалению, совершенно не практичны. Сейчас уже и в автомагазине практически невозможно встретить в продаже обычных лампочек накаливания, на смену которым пришли галогеновые лампы.

2. Галогенные лампы.
Галогенные лампы решили часть проблем, связанных с обычными лампочками.
Форма лампы позволяет использовать более короткую нить накаливания, колба лампы изготовлена из кварцевого стекла.
Колба наполнена инертным газом с парами галогена(йод, бром и другие). Применение такого наполнителя позволяет осуществить физико-химическую реакцию возвращения молекул вольфрама обратно на нить накаливания галогенной лампы.
Поэтому стекло галогенных ламп не мутнеет из-за оседания вольфрама и пропускает через поверхность колбы бо́льшее количество фотонов света.Галогенные лампы позволили поддерживать более высокую температуру нити накаливания, что изменило длину волны испускаемого спектра и повысило эффективность ламп.
Стекло галогенной лампы нельзя трогать руками.
При касании мы всегда оставляем отпечатки, а с ними жир и грязь, что в свою очередь вызывает неравномерное распределение температуры по кварцевой колбе галогенной лампы. При нарушении температурного режима колба может треснуть, и лампа выйдет из строя.
На сегодняшний день галогенные лампы имеют наиболее широкое применение в автомобилях.

3. Газоразрядные лампы.
Газоразрядные лампы появились самыми последними — в середине 90-х годов.
На вид они не отличаются от галогенных ламп, но принцип их работы совершенно другой.
Колба заполнена газом (чаще всего — это ксенон)
Поэтому лампы называются ксеноновыми. В ксеноне создаётся электрическая дуга между электродами.
Цветовая температура — это характеристика источника света, определяющая ощущаемый глазом цвет. Каждому цвету соответствует своя температура, измеряемая в градусах Кельвина (далее — К).
Глаз человека лучше всего видит при дневном свете.
Цветовая температура показывает, как должен быть нагрет газ внутри колбы, чтобы лампа светила тем или иным цветом.
Как правило, производители предлагают ассортимент из трёх основных видов цветовых температур:
• 4300 Кельвинов — "Бело-молочный"
• 5000 Кельвинов — "Белый"
• 6000 Кельвинов — "Голубой кристалл".

Чем выше цветовая температура, тем больше лампа будет отдавать в голубой свет, а чем меньше — тем в жёлтый. Также чем выше температура ксенона, тем меньше яркость излучаемого света.
Штатный ксенон, который ставится непосредственно на заводе, имеет цветовую температуру 4300 К. При установке ксенона с цветовой температурой 5000 К потеря в яркости невелика. Поэтому многие устанавливают среднее по цвету — 5000 К.
При цвете свечения ксенона 6000 К показатель освещенности сильно падает, и в плохую погоду (дождь, снег, слякоть) освещения будет не хватать.
Минусами газоразрядных ксеноновых ламп является необходимость установки дополнительного оборудования, обеспечивающего подачу напряжения до 20000 Вольт, необходимого для создания электрической дуги.
И как ни странно, к минусам можно отнести слишком высокую интенсивность испускаемого света, которая отрицательно сказывается на безопасности дорожного движения.
Установка ксеноновых ламп должна производится в условиях автосервиса.
Колбу газоразрядных ламп также запрещено трогать руками.

Обладая рядом преимуществ перед галогеном, ксеноновые и светодиодные лампы завоевали большую популярность.
Главное преимущество ксеноновой (газоразрядной) лампы — её световой поток, который примерно в два-три раза мощнее, чем у галогенной.
Цветовая температура света ксеноновой лампы намного выше, чем у галогенной, в результате чего видимость намного лучше, чем при свете галогенных фар.

Читайте так же:
Розетка под цоколь от лампочки

Другие приятные особенности ксенона — повышенный срок службы, до 2000-3000 часов против 400-1000 у галогеновой лампы. Это результат отсутствия в ксеноновой лампе хрупкой нити, чувствительной к тряске. Кроме того, в рабочем режиме ксенон потребляет гораздо меньший ток, что положительно сказывается на ресурсе генератора автомобиля.
Ксеноновая лампа нагревается на 40% меньше, чем галогеновая.
Дело в том, что КПД галогеновой лампы 30%, именно эти 30% и преобразуются в световую энергию, остальные 70% потребляемой энергии идут в тепло.
Ксеноновые лампы работают по совершенно другому принципу, и лишь небольшая часть энергии уходит в тепло. Так что ксенон холоднее галогена, поэтому опасность оплавления фары при работе ксеноновой лампы отсутствует.
Из недостатков ксеноновых фар можно выделить следующие:
• Дороговизна. Высокая стоимость лампы, кроме этого, в случае замены ксеноновых ламп нужно менять их в паре (со временем спектр излучения ксеноновой лампы изменяется).
• Для розжига ксеноновой лампы нужно подать на лампу напряжение около 25000 Вольт и поддерживать его на уровне 80 Вольт с частотой 300 Гц. Поэтому подключить лампу прямо к бортовой сети не получится, а значит, лампа нуждается в дополнительном блоке розжига.
• Задержка при включении (время на розжиг).

4. Светодиодный лампы.

Одним из последних новшеств в производстве автомобильных ламп являются светодиодные лампы. Светодиодные лампы постепенно завоёвывают авторитет, благодаря интенсивному яркому свету и малой потребляемой мощности.
Качество света фар, как известно, напрямую зависит от двух составляющих — самой оптики и применяемых ламп.
Преимущества светодиодных ламп:
• Низкое энергопотребление сильно уменьшает нагрузку на электросеть автомобиля.
• Большой срок службы, от 50000 часов.
• Высокая надёжность при ударах и вибрациях из-за отсутствия нити накала.
• Большой световой поток, от 1800 до 3600 Люмен.
• Цветовая температура схожа с цветом ксенона, то есть свет белый, а не жёлтый.

Примечание.

Видимое излучение оцениваемое по световому ощущению, которое оно производит на человеческий глаз, называется световым излучением, а мощность такого излучения — световым потоком. единица светового потока — Люмен (Лм).

Для примера световой поток различных источников света:

• Лампа накаливания 100 Вт — 1350 Лм
• Галогенная лампа накаливания 230 В 70 Вт — 1170 Лм
• Газоразрядная лампа 35 Вт ("автомобильный ксенон") — 3000-3400 Лм
• Светодиод 40-80 Вт — 6000 Лм
• Светодиодная лампа (цокольная) 4500 К, 10 Вт — 860 Лм
• Солнце — 3,63х10^28 Лм

В последнее время светодиоды стали пользоваться большей популярностью в быту, несмотря на то, что по стоимости они минимум в 10 раз дороже привычных ламп накаливания. Основная причина этого — их экономичность. Срок службы светодиодного светильника может составлять до 10 лет, а его энергопотребление во много раз ниже "классики".
В автомобилях все эти преимущества особенно актуальны, так как чем ниже потребление тока, тем заметней снижается нагрузка на аккумулятор (АКБ). Да и менять перегоревшие лампы придётся гораздо реже. Светодиодные приборы сегодня можно встретить во многих иномарках, даже бюджетных. К примеру, их часто используют в стоп-сигналах, индикаторах, поворотниках и в приборных панелях. Светодиодам необходим номинальный рабочий ток. В самых простых случаях эту проблему решает резистор, а в более сложных придётся устанавливать дополнительные электронные узлы — источники тока.
При этом в пользу замены светодиодов множество факторов. Во-первых, такие лампы служат значительно дольше традиционных. Они выдерживают температуры от -30 до +70, куда меньше греются, потребляют значительно меньше электричества. Правильно устанавливаемая светодиодная лампа отличается большей устойчивостью к вибрациям и ударам, что весьма существенно для автомобиля, передвигающегося по российским дорогам.
Эксперты утверждают, что грамотно сконструированный светодиод от хорошего производителя будет работать без замены примерно столько же, сколько и весь автомобиль.
Так же советуют начать с замены традиционных ламп накаливания на светодиоды в габаритах, огнях подсветки багажника, освещения бардачка. Необходимо посмотреть цоколи использующихся в автомобиле ламп, чтобы подобрать аналогичные, но уже светодиодные. Кстати, при этом можно выбрать и температуру свечения, которая бывает теплой белой (ближе к жёлтому свечению ламп накаливания), просто белой и холодной белой (отдаёт в синеву).

Читайте так же:
Экономная лампа мигает при выключенном выключателе

Тонкости при установке светодиодов.

Если у автомобиля есть бортовая система самодиагностики, то установка светодиодов может активировать функцию предупреждения о перегоревших лампочках, так как бортовой компьютер увидит снижение потребляемого тока. Для того чтобы убрать этот сигнал, нужно подключить диагностический компьютер и внести корректировки. А можно просто не обращать внимание на предупреждения.
Замена в автомобиле ламп накаливания на светодиодные лампы позволит снизить нагрузку осветительных приборов на аккумулятор (АКБ) в среднем на 85%. Кроме того, можно сэкономить и на покупках самих лампочек, которые не нужно будет больше менять раз в год или пол года. Светодиоды значительно прочнее ламп накаливания.

Принцип работы люминесцентной лампы и устройство прибора

люминесцентная лампа

Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.

Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.

При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.

Устройство люминесцентной лампы

Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.

Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.

устройство электроприбора

Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.

Схема

Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.

Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.

вариант подключения лампы

Схема подключения люминесцентных ламп без дросселя и стартера

В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:

  • подключение с применением электромагнитного балласта и стартера;
  • подключение с электронным пускорегулирующим аппаратом.

Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.

чертеж подключения лампочки

Схема подключения лампы с дросселем и стартером

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.

лампы Вуда

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.

Для чего нужен дроссель в люминесцентной лампе

Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.

Читайте так же:
Сила тока в лампочке фонарика равна 200

В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:

  • 9 Вт — для стандартной энергосберегающей лампы;
  • 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
  • 18 w — для настольных осветительных приборов;
  • 36 Вт — для люминесцентного светильника с малыми показателями мощности;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых приборов потолочного типа;
  • 80 Вт — для мощных осветительных приборов.

Принцип работы стартера люминесцентной лампы

Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.

Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.

принцип работы люминесцентной лампы

Схема работы стартера

Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.

Устройство и принцип работы люминесцентного светильника

Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.

Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.

люминесцентный источник света

Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.

Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.

Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей.

Видео на тему

Влияние балластного сопротивления на работу газоразрядных ламп.

При последовательном подключении газоразрядной лампы с балластным сопротивлением к источнику электроэнергии, достаточным для пробоя газового промежутка до возникновения разряда, к электродам будет приложено напряжение равное U3, В. После начала разряда и установления стабильного разрядного тока напряжение на лампе снизится до UГ В, при этом часть напряжения падает на балластном сопротивлении, а другая – на лампе. Для постоянного тока можно записать UС= UЛГ+UБ.

Так как газоразрядные лампы работают на переменном токе, электроды попеременно выполняют роль катода и анода, а характер изменения напряжения и тока на лампе будет зависеть от балластного сопротивления. Рассмотрим стабилизацию работы газоразрядных ламп с активным, индуктивным и емкостным сопротивлениями, которые представлены на осциллограммах

Стабилизация работы газоразрядных ламп при помощи активного сопротивления (а)

Осуществляется просто, но имеет ряд существенных недостатков. Из осциллограммы (а) видно, что ток в лампе возникает, когда UC=U3, т.е. напряжение будет достаточным для зажигания разряда. Как только разряд появится, напряжение на лампе начинает быстро снижаться до UЛГ и остается таким пока мгновенное значение напряжения сети не снизится до величины UЛГ. В этот момент разряд гаснет, а ток становится равным нулю. В следующий полупериод процесс зажигания, горения и погасания разряда повторяется. Как видно из осциллограммы перезажигание разряда в каждом полупериоде сопровождается паузами в начальной jН и конечной jК фазах. Общая длительность паузы jН + jК может достигать 1/3 периода. Наличие пауз разрядного тока ухудшает показатели работы источника оптического излучения, служит причиной возникновения пульсаций потока излучения и стробоскопического эффекта. Кривая мгновенных значений силы тока утрачивает форму синусоиды, а срок службы электродов уменьшается вследствие усиленного распыления оксидного слоя и быстрого снижения эмиссионных свойств электродов. Особенно большим недостатком активного балласта является большой расход электроэнергии.

Читайте так же:
Управление тремя лампами одним выключателем

Стробоскопический эффект- это создание впечатления того, что движущиеся части механизмов кажутся неподвижными, что дезориентирует работающий персонал и может привести к травмам с очень тяжелыми последствиями.

Стабилизация работы газоразрядной лампы при помощи индуктивного сопротивления (б)

Как видно из осциллограммы (б), при стабилизации разряда на лампе с помощью индуктивного балласта возникает сдвиг по фазе между мгновенными значениями напряжения сети и на зажимах лампы. Последнее значение помогает процессу перезажигания дугового разряда в каждом полупериоде, так как в момент перехода тока через нулевое значение к лампе бывает приложено значительное мгновенное значение напряжения сети, благодаря чему перезажигание разряда происходит без заметной паузы, а форма кривой мгновенных значений очень близка к синусоиде. В результате режим работы электродов облегчается, а потери мощности в индуктивном балласте значительно ниже, чем в активном, и составляет 10…35%

Стабилизация работы ГРЛ емкостным сопротивлением (в)

Этот вид стабилизации применяется редко. Соответствующие осциллограммы представлены на рис. в, из которых видно, что кривая тока приобретает чрезвычайно искаженную форму, а срок службы электродов резко снижается. Большие паузыи всплески токов ведут к значительному снижению светотехнических характеристик лампы. При емкостном балласте ток по фазе опережает напряжение сети, поэтому он снижается раньше до нуля, чем напряжение изменит знак. В конце каждого полупериода емкость оказывается заряженной, а к лампе приложено напряжение, равное амплитудному, поэтому перезажигание лампы происходит с резким увеличением тока, а в процессе разряда емкость практически не ограничивает ток, поэтому в лампе он достигает величин намного больших, чем при активном и индуктивном балласте. Вследствие этого газоразрядная лампа с емкостным балластом работает очень нестабильно, имеет большую пульсацию излучаемого потока и очень низкую продолжительность службы электродов. Все это и ограничивает использование емкостного балласта на практике.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Электромагнитные ПРА. Схемы включения люминесцентных ламп с ЭмПРА.

ЭмПРА

Здравствуйте, уважаемые читатели и гости сайта Power Coup Electric. В сегодняшней статье мы расскажем вам про ЭмПРА (электромагнитный пускорегулирующий аппарат) на примере включения люминесцентных ламп.

Для поддержания и стабилизации процесса разряда последовательно с люминесцентной лампой включается балластное сопротивление в сети переменного тока в виде дросселя или дросселя и конденсатора. Эти устройства называют пускорегулирующими аппаратами (ПРА).

Напряжение сети, при котором работает люминесцентная лампа в установившемся режиме, недостаточно для ее зажигания. Для образования газового разряда, т. е. пробоя газового пространства, необходимо повысить эмиссию электронов путем их предварительного разогрева или подачи на электроды импульса повышенного напряжения. То и другое обеспечивается с помощью стартера, включенного параллельно лампе.

ЭмПРА

Схема включения люминесцентной лампы

На рисунке выше показана схема включения люминесцентной лампы:

  • а — с индуктивным балластом
  • б — с индуктивно-емкостным балластом

Как происходит процесс зажигания люминесцентной лампы

Стартер представляет собой миниатюрную лампочку тлеющего разряда с неоновым наполнением, имеющую два биметаллических электрода, которые в нормальном положении разомкнуты.

При подаче напряжения в стартере возникает разряд и биметаллические электроды, изгибаясь, замыкаются накоротко. После их замыкания ток в цепи стартера и электродов, ограниченный только сопротивлением дросселя, возрастает до двух-трехкратного значения рабочего тока лампы и происходит быстрый разогрев электродов люминесцентной лампы. В это же время биметаллические электроды стартера, остывая, размыкают его цепь.

В момент разрыва цепи стартером в дросселе возникает импульс повышенного напряжения, вследствие которого происходят разряд в газовой среде люминесцентной лампы и ее зажигание. После того как лампа зажглась, напряжение на ней составляет около половины сетевого. Такое напряжение будет и на стартере, однако этого оказывается недостаточно для его повторного замыкания. Поэтому при горящей лампе стартер разомкнут и в работе схемы не участвует.

Читайте так же:
Livolo выключатель светодиодная лампа

ЭмПРА

Одноламповая стартерная схема включения

На рисунке выше представлена одноламповая стартерная схема включения люминесцентной лампы:

  • Л — люминесцентная лампа
  • Д — дроссель
  • Ст — стартер
  • С1 — С3 — конденсаторы

Конденсатор, включенный параллельно стартеру, и конденсаторы на входе схемы предназначены для снижения уровня радиопомех. Конденсатор, включенный параллельно стартеру, кроме того, способствует увеличению срока службы стартера и влияет на процесс зажигания лампы, способствуя значительному снижению импульса напряжения в стартере (с 8000 — 12 000 В до 600 — 1500 В) при одновременном увеличении энергии импульса (за счет увеличения его продолжительности).

Недостатком описанной стартерной схемы является низкий cos φ, не превышающий 0,5. Повышение cos φ достигается либо включением конденсатора на вводе, либо применением индуктивно-емкостной схемы. Однако и в этом случае cos φ = 0,9 — 0,92 в результате наличия высших гармонических составляющих в кривой тока, определяемых спецификой газового разряда и пускорегулирующей аппаратурой.

В двухламповых светильниках компенсация реактивной мощности достигается при включении одной лампы с индуктивным, а другой с индуктивно-емкостным балластом. В этом случае cos φ = 0,95. Кроме того, такая схема ПРА позволяет сгладить в значительной степени пульсации светового потока люминисцентных ламп.

Схема включения ламп и ЭмПРА с расщепленной фазой

Наибольшее распространение для включения люминесцентных ламп мощностью 40 и 80 Вт получила у нас двухламповая импульсная схема стартерного зажигания с применением балластных компенсированных устройств 2УБК-40/220 и 2УБК-80/220, работающих по схеме «расщепленной фазы». Они представляют собой комплектные электрические аппараты с дросселями, конденсаторами и разрядными сопротивлениями.

ЭмПРА

Монтажная схема включения двухлампового стартерного аппарата 2УБК

На рисунке выше представлена монтажная схема включения двухлампового стартерного аппарата 2УБК:

  • Л — люминесцентная лампа
  • Ст- стартер
  • С — конденсатор
  • r — разрядное сопротивление
  • корпус ПРА 2УБК показан пунктиром

Последовательно с одной из ламп включается только дроссель-индуктивное сопротивление, что создает отставание тока по фазе от приложенного напряжения. Последовательно со второй лампой, помимо дросселя, включается конденсатор, емкостное сопротивление которого больше индуктивного сопротивления дросселя примерно в 2 раза, создающий опережение тока, в результате чего суммарный коэффициент мощности комплекта получается порядка 0,9 -0,95.

Кроме того, включение последовательно с дросселем одной из двух ламп специально подобранного конденсатора обеспечивает такой сдвиг фаз между токами первой и второй ламп, при котором глубина колебаний суммарного светового потока двух ламп будет существенно уменьшена.

Для увеличения тока подогрева электродов последовательно с емкостью включается компенсирующая катушка, которая отключается стартером.

Бес-стартерные схемы включения люминесцентных ламп

Недостатки стартерных схем включения (значительный шум, создаваемый ЭмПРА при работе, возгораемость при аварийных режимах и др.), а также низкое качество выпускаемых стартеров, привели к настойчивым поискам бес-стартерных экономически целесообразных рациональных ПРА с тем, чтобы в первую очередь применить их в простых и дешевых установках.

Для надежной работы бес-стартерных схем, рекомендуется применять лампы с нанесенной на колбы токопроводящей полосой.

Наибольшее распространение получили трансформаторные схемы быстрого пуска люминесцентных ламп в которых в качестве балластного сопротивления используется дроссель, а предварительный подогрев катодов осуществляется накальным трансформатором либо автотрансформатором.

ЭмПРА

Бес-стартерные одноламповая и двухламповая схемы включения

На рисунке выше показаны, бес-стартерные одноламповая и двухламповая схемы включения люминесцентных ламп:

  • Л — люминесцентная лампа
  • Д — дроссель
  • НТ — накальный трансформатор

В настоящее время расчетами установлено, что стартерные схемы для внутреннего освещения более экономичны, и поэтому они имеют преимущественное распространение. В стартерных схемах потери энергии составляют примерно 20 — 25%, в бес-стартерных — 35%

В последнее время схемы включения люминесцентных ламп с электромагнитными ПРА (ЭмПРА) постепенно вытесняются схемами с более функциональными и экономичными электронными пускорегулирующими аппаратами (ЭПРА).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector