Sanitaryhygiene.ru

Санитары Гигиены
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ditec SPRINT привод для автоматизации распашных дверей весом до 110 кг. и шириной полотна до 1200 мм

Ditec SPRINT привод для автоматизации распашных дверей весом до 110 кг. и шириной полотна до 1200 мм

Класс обслуживания: 5 (минимум 5 лет при 600 циклах в день).
Использование: ВЫСОКОИНТЕНСИВНОЕ (для входов с высокой интенсивностью движения).
— Эксплуатационные характеристики приведены для рекомендованной массы (примерно 2/3 от максимально допустимой массы). При использовании с максимально допустимой массой указанные выше эксплуатационные характеристики могут ухудшиться.
— Класс обслуживания, время непрерывной работы и количество последовательных циклов являются ориентировочными. Они определены статистическим методом в условиях средних нагрузок и могут не соответствовать каждому отдельному случаю.
— Каждый автоматический вход содержит элементы, работоспособность которых зависит от:
трения, балансировки и окружающих условий, которые могут значительным образом изменить как срок службы, так и качество работы автоматического входа или его компонентов (среди которых устройства автоматического управления). В обязанности специалиста по установке входит обеспечение соответствующих запасов прочности для каждой детали установки.

Размеры привода Ditec Sprint

Стандартная установка привода Ditec Sprint

Поз.КодОписание
1SPRINTАвтоматика
2SBA
SBS
SPRINTBRAS
FBA
Шарнирная тяга
Скользящая тяга
Шарнирная тяга с тремя рычагами
Ограничитель хода для шарнирной тяги
3DF660Напольный ограничитель хода
4COMH — COMKПереключатель режимов
5SPRINTBATКомплект аккумуляторных батарей
6PASM24W (микроволновый), или
PASM243 (микроволновый), или
PASS24 (микроволновый), или
PASS24W (микроволновый), или
PASA (инфракрасный)
Датчик открывания
7REM35
REM90
REM100
Датчик безопасности на открывании и закрывании
AПодключите электропитание к сертифицированному многополюсному выключателю с зазором между разомкнутыми контактами не менее 3 мм (не входит в комплект поставки). Подключение к электросети должно быть выполнено через отдельный кабельный канал, не связанный с соединениями устройств управления и безопасности.

Основые компоненты привода Ditec Sprint

Поз.КодОписание
1Двигатель 24 В с кодовым датчиком положения
2EL38Блок управления
3SPRINTBATКомплект аккумуляторных батарей
4Базовая пластина
5Кнопка включения и выключения
6Кнопка переключателя режимов
7Опора тяг
8Алюминиевый корпус [SPRINT V-SPRINT LV-SPRINT VJ]
9Корпус из серого пластика [SPRINT P-SPRINT L]
Корпус из черного пластика [SPRINTPN-SPRINT LN-SPRINT PNJ]

Установка привода Ditec Sprint со скользящей тягой SBS

Используйте скользящую тягу SBS для дверей, которые открываются внутрь (если смотреть со стороны автоматики).

  • Снимите корпус и закрепите автоматику на стене у казанных точках (P) надежно и ровно, при соблюдении указанных на рисунке размеров: уделяйте внимание оси шарнира.
  • Просверлите направляющую (A) и прикрепите ее к стене
  • Установите башмак (B) скользящей тяги в направляющую (A). Прикрепите тягу (C) к автоматике так, чтобы она заняла правильное положение в гнезде опоры тяг (D).
  • Установите крышку (E) и две головки (F).
  • Отрегулируйте внутренний ограничитель хода (G) в соотвествующее положение.

Установка привода Ditec Sprint с шарнирной тягой SBA

Используйте шарнирную тягу SBS для дверей, которые открываются наружу (если смотреть со стороны автоматики).

  • Снимите корпус и закрепите автоматику на стене в указанных точках (P) надежно и ровно, при соблюдении указанных на рисунке размеров: уделяйте внимание оси шарнира.
  • Установите шарнирную тягу , не затягивая винты (A), и закрепите ее на автоматике так чтобы она заняла правильное положение в гнезде опоры тяг (B).
  • Прикрепите кронштейн (C) к двери.
  • При закрытой двери выполните регулировку тяги и затяните соответствующие винты (A).

Установка привода Ditec Sprint с шарнирной тягой с 3 рычага- ми SPRINTBRAS

Используйте шарнирную тягу SPRINTBRAS для дверей, которые открываются вовнутрь (если смотреть со стороны автоматического устройства).

  • Снимите корпус и закрепите автоматику на стене в указанных точках (P) надежно и ровно, при соблюдении указанных на рисунке размеров: уделяйте внимание оси шарнира.

ВНИМАНИЕ: расстояние крепления автоматики относительно створки должно составлять от 185 до 45 мм.

Механизмы подъема. Преобразователь частоты серии EI-9011 в частотно регулируемом приводе

Механизмы подъема груза с применением электропривода устанавливаются на всех грузоподъемных машинах. Их общая конструкция характерна не только для кранов и лифтов, но и для машин специального назначения, в которых направление вектора приложения силы от действия нагрузки может совпадать с направлением вращения ротора электродвигателя.

Самый простой вариант механизма — грузовая лебедка. Это машина для подъема грузов с помощью каната, навиваемого на барабан с зацепом в виде крюка.

1.jpg

Основная кинематическая схема механизма подъема

Электропривод механизма подъема

Самый распространенный электродвигатель для механизма подъема — это асинхронный электродвигатель с короткозамкнутым ротором. При простоте управления (прямой пуск) у него есть существенные недостатки:

  • большие пусковые токи,
  • большие динамические нагрузки при запуске.

Устранить их в какой-то мере позволяет применение электродвигателя с фазным ротором. Но появляется новый недостаток — громоздкое силовое коммутационное оборудование.

Наиболее высоких эксплуатационных показателей позволяет достичь применение частотно-регулируемого привода, а именно:

  • снизить пусковые токи до уровня номинального,
  • снизить динамические нагрузки до уровня расчетных,
  • плавно регулировать скорости вращения в широком диапазоне.
Читайте так же:
Розетки потолочные резные деревянные

Применение ПЧ серии EI-9011 для управления механизмом подъема

При выборе преобразователя частоты «Веспер» прежде всего надо учитывать тип редуктора механизма подъема. Различают 2 основных типа:

  • цилиндрический,
  • червячный.

Различие этих редукторов в том, что цилиндрический — двухсторонний, т. е. крутящий момент передается как от входного вала к выходному, так и наоборот — от выходного вала к входному; а червячный — односторонний. Последний устанавливают реже — из-за низкого КПД и повышенного износа.

В механизмах подъема с червячным редуктором возможно применение любого преобразователя частоты «Веспер» серий EI, E3, E4, E5. Но применение ЧРП в таком механизме мы рассматривать не будем — из-за отсутствия особенностей его работы.

Для механизмов подъема с цилиндрическими редукторами рекомендуется применять преобразователи частоты серии EI-9011, благодаря наличию у них:

  1. Мощного центрального процессора, который позволяет создать программное обеспечение для векторного режима с высокими точностными характеристиками и широким функционалом.
  2. Двух векторных режимов: в разомкнутой системе и с датчиком обратной связи по скорости.
  3. Широкого диапазона регулировки скорости: 1/100 в обычном векторном режиме и 1/1000 — в векторном с обратной связью.
  4. Векторного режима с обратной связью, который обеспечивает М=100% практически при нулевой скорости вращения двигателя.

Ранее приведенная кинематическая схема механизма подъема оптимальна для управления от преобразователя частоты EI-9011. В составе механизма есть тормозное устройство (3), конструктивно не связанное ни с электродвигателем, ни с редуктором. Для него доступно независимое управление электрическим сигналом.

С преобразователем частоты структура будет иметь следующий вид:

2.jpg

Рассмотрим простейшую схему управления приводом грузовой лебедки с электродвигателем небольшой мощности — до 8 кВт:

3.jpg

Для такого применения достаточно, как правило, режима работы ПЧ «Векторный в разомкнутой системе».

Почему именно он? Потому что позволяет управлять вращением двигателя в более широком диапазоне скоростей, чем скалярный режим. Это особенно важно на нижней границе диапазона, где требуется обеспечить номинальный момент на валу двигателя при возможной минимальной скорости вращения. Чем меньше значение выходной частоты ПЧ, при которой двигатель начинает вращение и имеет номинальную нагрузку на своем валу, тем меньше динамическая (ударная) нагрузка на все части механизма подъема.

Программирование ПЧ серии EI-9011 для управления механизмом подъема

Для программирования ПЧ необходимо подключить его к сети силового электропитания 3Ф, 380 В, 50 Гц. Соответственно, и электродвигатель, с которым предполагается работа, тоже следует подключить к ПЧ. Программирование производится с собственного пульта управления.

Векторный режим работы предусматривает обязательную автонастройку ПЧ с применяемым электродвигателем. Проводить ее следует при каждой замене двигателя.

Важное примечание: в процессе автонастройки ПЧ определяет ряд параметров двигателя во время вращения последнего. Поэтому для корректного определения параметров вал двигателя должен быть свободным — на нем не должно быть лишней присоединенной массы.

После подачи напряжения питания в основном меню ПО надо выбрать раздел «Инициализация». В этом разделе:

  • Выполнить инициализацию (возврат значений всех параметров к заводским).
  • Выбрать режим работы — «Векторный в разомкнутой системе».
  • Определить уровень доступа к параметрам — «Расширенный».

Выбор других разделом меню и параметров производится аналогично.

Программирование можно выполнить и с помощью пульта управления ПЧ. Вся информация выводится на дисплей пульта в доступном виде и с комментариями на русском языке.

Следующий шаг: в основном меню ПО надо выбрать раздел «Автонастройка». В этом разделе следует выполнить все указания по вводу значений параметров двигателя и запустить процесс автонастройки. Если после его завершения на дисплее пульта управления нет сообщений об ошибках, следует перейти к программированию.

Далее в основном меню ПО надо выбрать раздел «Программирование». Перечень его параметров определяется следующими условиями:

  • Управление работой ПЧ (человек или АСУ).
  • Управление работой механизма со стороны ПЧ.

Для рассматриваемого варианта применения алгоритм работы и управления будет следующим:

При подаче команды движения вверх или вниз ПЧ выдает команду на отключение тормоза (размораживает механизм), а затем начинает вращение двигателя с минимальной частоты. В процессе работы лебедки можно регулировать скорость вращения и, соответственно, линейную скорость перемещения зацепа с грузом, выбирая оптимальную.

Вернемся к электрической схеме внешних подключений к ПЧ.

Клеммы 1 и 2 имеют фиксированные функции пуска в прямом и обратном направлении вращения соответственно.

После подачи питания на ПЧ вид управления — дистанционный: световые индикаторы УПР и РЕГ светятся. За это состояние отвечают параметры b1-02 и b1-01 соответственно, т.е. ПЧ уже настроен на внешние команды «ПУСК» и «УПРАВЛЕНИЕ СКОРОСТЬЮ».

Читайте так же:
Рамки под розетки авв

Управление тормозом лебедки будет выполнять многофункциональный дискретный выход: клеммы 9-10. К началу вращения, после подачи команды «ПУСК», контакты внутреннего реле замыкают клеммы 9-10 и обеспечивают подачу сигнала управления тормозной системой лебедки. Такой режим обеспечивает функция дискретного выхода «Во время вращения».

В сочетании с режимом торможения постоянным током при пуске можно создать момент на валу двигателя при минимальной выходной частоте, при котором не будет срыва управления, и динамические нагрузки будут минимальными.

Процесс торможения постоянным током при пуске определяется параметрами:

  • В2-01 — частота включения постоянного тока торможения.
  • В2-02 — уровень тока торможения.
  • В2-03 — время торможения постоянным током при пуске.

При подаче команды «ПУСК» включается торможение двигателя постоянным током, но тормоз еще не отключен. В течение времени торможения происходит предварительное намагничивание двигателя, и к моменту отключения тормоза на его валу уже создан начальный момент. Это поясняют следующие временные диаграммы:

4.jpg

При опускании груза направление вращения вала двигателя совпадает с направлением вектора силы, которая определяется массой груза, и эта сила пытается увеличить скорость вращения вала двигателя. Таким образом, двигатель переходит в генераторный режим работы.

5.jpgЭДС, которая вырабатывается двигателем в таком режиме, поступает в ПЧ, повышая напряжение на звене постоянного тока. Чтобы исключить аварийные остановки привода из-за перегрузки по напряжению, предусмотрен тормозной резистор. Он подключается к звену постоянного тока, когда напряжение ЗПТ достигает критического значения и рассеивает в тепло излишек электроэнергии.

Обобщая вышесказанное, можно составить минимальный список параметров с конкретными значениями для программирования режимов работы и управления ЧРП грузовой лебедки:

  • А1-03=2220,
  • А1-02=2,
  • А1-01=4,
  • В2-01=0,5,
  • В2-02=50.0,
  • В2-03=1.0,
  • Н2-01=37.

Рассмотренный пример ЧРП грузовой лебедки с применением ПЧ «Веспер» серии EI-9011 можно использовать как базовый — для проектирования более сложных механизмов подъема, с улучшенными эксплуатационными характеристиками.

Ремонт электропривода

Изобретение электропривода к швейной машине было поистине революционным, поскольку позволило упростить работу мастера, его руки стали свободными, и он смог больше усилий приложить для качественного пошива одежды или других швейных изделий.

В этом устройстве электроэнергия преобразуется в механическую энергию, заставляющую иглу с ниткой быстро прокалывать ткани, таким образом, соединяя их в одну деталь. Электропривод также увеличил силу прокола ткани иглою, что позволило мастерам работать с более плотными материалами: кожей, мехом и другими.

Устройство, схема и принцип работы электропривода

Электропривод к швейной машинке устанавливается, чтобы автоматизировать процесс пошива путем преобразования электроэнергии в механическое вращение рабочего вала, при этом управляя частотой вращения электродвигателя.

Схема электропривода

Современный электрический привод у швейной машины работает в едином комплексе устройств, участвующих в процессе преобразования электрической энергии в поступательное движение иглы. К нему относятся: электрический двигатель, реостат в виде рабочей педали, ремень для привода шкива, шкив, пасики, клеммы штекера, защитный корпус, электрические провода и крепления.

Современные приводы рассчитаны на работу со стандартным напряжением сети, для бытовых машин оно равно — 220В, для промышленных -380 В.

Все электрические приводы классифицируются на две группы: сервоприводные и с сцеплением.

Сервоприводные устройства предназначены в основном для бытовых швейных машин, они работают вместе с педалью, которая выполняет роль реостата, полностью контролирует скорость электродвигателя. В том случае, когда педаль не нажата — двигатель отключен и находится в нерабочем состоянии.

Такие двигатели маломощные не выше 150 Вт, и не могут продолжительно и постоянно работать, не более 30 минут, если меньший период не указан заводом-изготовителем оборудования.

Двигатель с сцеплением устанавливается на швейных машинах промышленного типа, он предназначен для выполнения большого объема пошивочных работ. Может беспрерывно работать часами и обрабатывать толстые, плотные ткани, которые сервоприводные машинки обработать не могут.

Тем не менее у них есть существенный недостаток, по сравнению сервоприводными двигателями — невозможность регулировки скорости пошива.

Устройство электропривода для бытовых швейных машин

Комплект электропривода для внешнего монтажа состоит из электропривода 90 Вт напряжением 220В, что является стандартным значением для отечественных бытовых швейных машин, а также из кронштейна для надежного закрепления привода к корпусу.

Корпус привода пластиковый, для защиты работающего персонала от ударов электротока. На нем расположена кнопка пуска. Ножной пускатель или корректор скорости аналогично исполнен из защитного противоударного пластика, он не разбивается при падении, а также не нагревается при работе.

Схема электропривода

С корпусом педали крепко закреплены 2 питающих электропровода в защищенной обмотке. Первый подключается к электро розетке, другой — к электроприводу.

Читайте так же:
Розетка для прицепа планета железяка

Для соединения электропривода со шкивом швейной машинки используется сверхпрочный зубчатый ремень, который практически не подвержен растягиванию и расслаиванию. Также к комплекту прилагаются крепежные винты и шайбы.

Можно ли отремонтировать самостоятельно

Электрические швейные машинки и их комплектующие относятся к очень надежным устройствам, способным работать десятилетиями, особенно если пользователь правильно выполняет техническое обслуживание в соответствии с требованием завода-изготовителя.

Важно! С тем чтобы не допустить аварийных выход из строя электропривода, нужно все время контролировать с каким напряжением крутится вал машинки.

Он должен поворачиваться довольно легко, без нарушений. Так при разгоне его рукой он обязан по инерции еще выполнить пару оборотов. Если он останавливается сразу, нужно хорошо обслужить машинку, почистить и смазать все трущиеся части машинным маслом по схеме, указанной в заводской инструкции.

Если этого не сделать, то затрудненное вращение вала, рано или поздно, приведет к перегреву мотора, за которым последует выход его из строя из-за перегоревших обмоток.

Кроме того, важно следить за графиком работы на бытовой швейной машине, поскольку они изначально не рассчитаны на продолжительную работу. Нужно делать перерывы, чтобы электрический привод мог охлаждаться. Это требование не распространяются на современные модификации бытовых машин, которые имеют встроенную воздушную крыльчатку на электроприводе, для охлаждения мотора.

Охлаждение электропривода

Тем не менее, случается ситуация, когда после включения в сеть провода электропривода, машинка не запускается. Владелец в такой ситуации, конечно же постарается запустить ее в работу, и задается вопросом, как самостоятельно ее отремонтировать.

Это не такой простой вопрос, поскольку остановка машины может быть вызвана многими причинами. Некоторые сбои вполне под силу устранить домашнему мастеру самостоятельно, а некоторые даже не смогут исправить и в сервисных центрах.

Поэтому начинать надо с уточнения факта, находится ли швейная машинка на гарантийном обслуживании. Обычно этот период у швейных машин довольно большой, более пяти лет, он указывается в паспорте на устройство.

И в том случае, когда гарантия еще действительна, при любом виде поломок, нужно обращаться в сервисные центры, адреса которых указываются в гарантийных документах продавцом товара при оформлении сделки.

Далее нужно выявить причины поломки, существует довольно объемный перечень работ, которые вполне способен выполнить домашний мастер самостоятельно.

Виды ремонтных работ на электроприводах швейных машинок для самостоятельного исполнения

Описание сбояПричины сбояВарианты исправления
1Гудит привод при давлении на педаль, подгорают контакты1. Перетянуто натяжение ремня.
2. Медленный ход вала из-за заеданий или засоров.
3. Подгорели контакты в электроцепи.
4. Обрыв электроцепи
1. Регулируют натяжение ремня.
2. Снимают ремень с двигателя и регулируют ход машинки.
3. Разборка педали и устранение препятствий в ходе якоря.
4. Проверка электропроводки на целостность токожил.
2Маховик вращается неравномерноРастянутый и ослабленный ремень на шкивеВыполнить натяжку ремня, опускают кронштейн
3Привод работает со сбоями и останавливаетсяЗависли щетки двигателя, заклинила пружина щеткиВынимают щетки вынуть, проводят очистку, чтобы они свободно перемещались
4Двигатель очень перегревается1. Зависли щетки.
2. Замыкание в электрообмотках из-за постоянных перегрузок.
1. Установить новые щетки.
2. При появлении искрения, немедленно остановить двигатель.
3. Замена электропривода.
5Якорь трет статорный башмакСбой в работе реостатного механизма педалиПереустановить ограничительное кольцо подшипника, чтобы передвинуть вал слева направо.
6При подключении напряжения в приводе появляется гудениеОтсутствует свободный ход в нажимной крышкеРазборка педали, отвод контактных пластин якоря подальше от реостата
7При легком нажатии на педаль, возникает максимальный токЗапала кнопка контакта ниже допустимого уровня головки стяжного болтаПоднять кнопку контакта

Однако очень часто, важные узлы электропривода самостоятельному ремонту не поддаются, например, сгорела педаль управления или обмотки электропривода. Их отремонтировать могут только специалисты при наличии специального оборудования.

Порой работа по восстановлению электродвигателя превышает стоимость нового комплекта, поэтому пользователю придется выбрать для себя приемлемый вариант восстановления работоспособности оборудования.

Как выбрать новый электропривод к швейной машинке

Даже если пользователь отремонтировал электропривод для швейной машины в мастерской — это ненадолго. С каждым разом машинка будет работать всё хуже, а привод быстрее перегреваться. Если же произойдет разрыв витков обмоток — привод ремонту больше не подлежит.

Поэтому владельцу придется покупать новый комплект электропривода для восстановления работы швейной машины. Сегодня это не проблема, российский рынок электробытовой техники насыщен предложениями по ремонтным комплектам к бытовым швейным машинкам, как отечественного, так и западных производителей, причем, что важно, многие из них универсальны и конструктивно могут подходить под большинство старых модификаций швейных машин.

Поэтому важно знать принципы выбора электропривода. Прежде всего придя в магазин или заказывая электропривод через торговую площадку онлайн, важно иметь под рукой сгоревший привод, для того чтобы знать его технические характеристики, направление вращения вала и вариант крепления к машине. Особенно это важно для приводов, которые устанавливаются внутри корпуса машины.

Моторы с внешней установкой на машинки подобрать проще, важно знать направление движения и электрические параметры: мощность, ток и напряжение. Крепление к машинкам у них однотипные, под ключ для болтового соединения 12 мм. В головке имеется шлиц, поэтому можно будет закреплять привод и отверткой.

Эксплуатация крановых тиристорных электроприводов — Тиристорные электроприводы постоянного тока

Тиристорные преобразователи постоянного тока являются устройством, преобразующим переменное напряжение питающей сети в выпрямленное регулируемое напряжение посредством фазоимпульсного управления тиристорами. Для пояснения принципа работы преобразователя на рис. 9 приведены схема трехфазного нулевого преобразователя, подключенного на якорную систему двигателя постоянного тока М, а на рис. 10 — диаграммы изменения токов и напряжений. Питание преобразователя осуществляется от сети через трансформатор Т с напряжением на вторичных обмотках Щ-Щ или через токоограничивающий дроссель. Регулирование средних значений выпрямленного напряжения осуществляется тиристорными блоками VS1-VS3 путем изменения системой фазоимпульсного управления (СИФУ) угла включения тиристоров а или р в зависимости от режима работы. Тиристор переводится в проводящее состояние при положительном потенциале между анодом и катодом импульса управления на его базу.

Рис. 9. Схема трехфазного нулевого преобразователя постоянного тока
Поскольку, как видно из схемы рис. 9, аноды тиристоров соединены между собой, включаться может только тот тиристор, потенциал катода которого наибольший. Точка перехода потенциала анод-катод тиристоров через нуль определяет момент естественного включения тиристоров, от которого и отсчитывается угол включения. Преобразователь может работать в выпрямительном или в инверторном режиме. В выпрямительном режиме ток /п и напряжение Un на выходе преобразователя совпадают по направлению и двигатель потребляет из сети энергию. В инверторном режиме направления тока и напряжения противоположны и энергия от двигателя, работающего как генератор, передается в сеть. Перевод преобразователя из выпрямительного в инверторный режим осуществляется посредством увеличения угла а сверх л/2. При этом
разность
Рис. 10. Диаграммы выходных напряжений и токов соответственно в выпрямительном и инверторном режимах:

а — диаграмма напряжения выпрямительного режима; б —_ диаграмма выходного тока выпрямительного режима; в — диаграмма выходного напряжения инверторного режима; г — диаграмма тока инверторного режима
Для обеспечения режима инвертирования необходимо, чтобы закрывающийся тиристор успел восстановить свои запирающие свойства в течение времени приложения к нему отрицательного напряжения, т.е. в пределах угла ф (рис. 10, в). В противном случае возможно опрокидывание преобразователя, приводящее к протеканию аварийного тока, так как ЭДС электродвигателя и напряжение питания совпадают по направлению. Угол у на рис. 10, в, г соответствует промежутку времени, в течение которого ток протекает по двум тиристорам: вступающему в работу и выходящему из нее. Этот угол называется углом коммутации.
В крановых электроприводах постоянного тока тиристорные преобразователи осуществляют питание якорных цепей двигателей и их обмоток возбуждения. Для крановых электроприводов до 1985 г. выпускались преобразователи типа АТРК, которые в настоящее время заменены на преобразователи типа ТПЕ. Принципы построения преобразователей обоих типов одинаковы, однако в ТПЕ использованы более совершенные конструктивные решения и они имеют по сравнению с АТРК меньшие массу и габариты. Технические характеристики преобразователей ТПЕ и АТРК приведены в табл. 1. Далее подробно рассматриваются преобразователи ТПЕ.
Таблица 1. Технические данные тиристорных преобразователей типа ТПЕ и АТРК

Номинальное выпрямленное напряжение, В

Номинальный выпрямленный ток, А

Максимальный выпрямленный ток, А

Габариты преобразователя, мм

Масса пре-
обра-
зова-
теля, кг

Номинальное выпрямленное напряжение, В

Номинальный выпрямленный ток, А

Максимальный выпрямленный ток, А

Масса пре-
обра-
зова-
теля, кг

СИЛОВЫЕ СХЕМЫ ПРЕОБРАЗОВАТЕЛЯ

Преобразователь включает в себя два управляемых выпрямителя: для питания якорной цепи двигателя и его обмотки возбуждения.
Выпрямитель якорных цепей выполнен по трехфазной мостовой реверсивной схеме со встречно-параллельным соединением двух выпрямительных мостов UZ1 и UZ2 (рис. 11, а), выпрямитель цепей возбуждения UZ3 построен по однофазной мостовой схеме (рис. 11,6). Охлаждение силовых тиристоров — естественное воздушное.
Мосты UZ1 и UZ2 подключены к сети быстродействующим автоматическим выключателем QF1 через токоограничивающий реактор L.
Номинальное и максимальное выпрямленное напряжение преобразователей составляет соответственно 230 и 440 В, номинальный выпрямленный ток возбуждения 15 А.

Рис. 11. Силовые схемы выпрямителя якорной цепи (а) и цепи возбуждения (б)
Выключатель QF1 защищает силовой выпрямитель от токов короткого замыкания на стороне переменного тока. На выходе выпрямителя защита осуществляется автоматическим выключателем QF2. В зависимости от номинального тока мосты имеют одну, две или три параллельные ветви соответственно на токи 200, 400 и 630 А. Управление тиристорными мостами раздельное от одной системы фазоимпуль- сного управления, при котором сигналы управления подаются только на работающую группу тиристоров. Это позволяет исключить протекание силовых токов в замкнутом контуре, образуемом тиристорными мостами, и в цепях, связывающих мосты, отсутствуют силовые дроссели.
Выпрямитель возбуждения UZ3 подключен к сети через токоограничивающие резисторы R и автоматический выключатель QF3, защищающий от токов короткого замыкания. В силовой цепи установлен также предохранитель F1, осуществляющий защиту от токов перегрузки.
ФУНКЦИОНАЛЬНАЯ СХЕМА ПРЕОБРАЗОВАТЕЛЯ
Функциональная схема представлена на рис. 12 и состоит из системы управления силового выпрямителя А1 и системы управления выпрямителя возбуждения А2. Система А1 включает следующие основные функциональные узлы: VI — задатчик интенсивности; U2 — регулятор скорости, контур регулирования тока, включающий регулятор тока U3 и датчик тока UA1; U4 — датчик напряжения; U5 — логическое переключающее устройство; UA2 — датчик нуля тока; AV-M -система фазоимпульсного управления.

Рис. 12. Функциональная схема преобразователя постоянного тока
Система А2 включает узел управления U6, задатчик интенсивности U7, регулятор тока возбуждения U8 с датчиком тока UA3 и систему фазоимпульсного управления AV. Задатчик интенсивности обеспечивает разгон привода (изменение напряжения на выходе силового выпрямителя) в функции времени при скачкообразном сигнале от командоаппарата SM. Система фазоимпульсного управления AV-M предназначена для генерирования управляющих импульсов и осуществления их фазового сдвига в зависимости от значения входного управляющего сигнала. Управление тиристорными мостами, как уже было сказано, раздельное, а их переключение производится логическим переключающим устройством 1/5. Управляющий сигнал на вход AV-M формируется системой автоматического регулирования, обеспечивающей стабильность и необходимое качество регулирования во всех возможных режимах. Система автоматического регулирования включает в себя контур скорости с регулятором скорости U2 и обратной связью по напряжению от датчика напряжения U4 и контур тока с регулятором тока U3 и обратной связью по току от датчика тока UA1 с ходом от трансформатора тока ТА1. Система управления возбуждением обеспечивает увеличение частоты вращения двигателя при малых нагрузках путем ослабления поля двигателя по сигналу от датчика силового тока UA1 и стабилизацию заданного узлом управления U6 тока возбуждения при колебаниях напряжения сети и изменении сопротивления обмотки возбуждения. Система автоматического регулирования преобразователя возбуждения одноконтурная по току возбуждения с поступлением сигнала обратной связи по току от трансформатора ТА2. Для осуществления питания и синхронизации системы управления выпрямителей якорной цепи и возбуждения служит блок U9, включающий пять источников выпрямленного напряжения: 12 В — для питания интегральных микросхем; 157 В — стабилизированный источник цепей управления; 150 В — для заряда емкостей в схеме фазового сдвига и источник 7,5 В для цепей смещения логического переключающего устройства. Поскольку работа основных узлов систем управления выпрямителями якорной цепи и цепи возбуждения во многом идентична, ниже рассматривается работа отдельных узлов системы управления силовым выпрямителем. При этом схемы приводятся в упрощенном виде, без учета корректирующих и помехозащитных устройств, подробно рассматриваемых в специальной литературе, а порядковые номера и обозначения элементов не соответствуют их обозначениям в схеме преобразователей.

ЗАДАТЧИК ИНТЕНСИВНОСТИ (ЗИ)

Схема задатчика интенсивности приведена на рис. 13. Она содержит два дифференциальных усилителя А1 и А2, первый из которых является усилителем входного сигнала

Рис. 13. Схема задатчика интенсивности
(резистор R3 в цепи отрицательной обратной связи), а второй — интегратором (конденсатор С1). Сигнал задания подается на инвертирующий вход усилителя А1 через резистор R2, а на неинвертирующий поступает сигнал отрицательной обратной связи через резистор R4. Время изменения выходного напряжения определяется значением входного сигнала и регулируется потенциометрами R7 и R8. Резистор R1 обеспечивает связь между входом ЗИ и узлом управления, резисторы R5 и R6 связывают усилители А1 и А2, а резистор R9 устанавливает необходимый уровень напряжения на инвертируемом входе интегратора А2. Полное время развертки входного сигнала (время интегрирования) может быть установлено от 1 до 14 с.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector