Sanitaryhygiene.ru

Санитары Гигиены
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Высоковольтные выключатели

Высоковольтные выключатели

Контроль и диагностика состояния высоковольтных выключателей. Информация, получаемая при инфракрасном контроле выключателя. Диагностика масляных выключателей. Традиционные методы и устройства для измерения параметров высоковольтного выключателя.

РубрикаФизика и энергетика
Видстатья
Языкрусский
Дата добавления11.01.2015
Размер файла126,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

В электроэнергетических системах высоковольтные выключатели относятся к одним из наиболее ответственных видов электрооборудования. Качество функционирования высоковольтных выключателей определяет степень надёжности и энергобезопасности работы всей системы передачи и распределения электроэнергии как в нормальных, так и в аварийных режимах. Поэтому весьма актуальными являются технический контроль и диагностика состояния высоковольтных выключателей, позволяющие своевременно выявлять развивающиеся дефекты или неисправности, а затем оперативно устранять их. Очевидно, что диагностике высоковольтных выключателей в эксплуатации любых энергообъектов следует уделять повышенное внимание. В настоящее время важную роль в электроэнергетике, в том числе и в диагностике высоковольтного электрооборудования, начинают играть цифровые методы, устройства и системы на микропроцессорной элементной базе. Эти методы имеют особо важное значение для изношенного электрооборудования, в первую очередь для масляных выключателей, которых в настоящее время находится в эксплуатации значительно больше, чем других типов. На предприятиях энергосистемы России количество масляных выключателей составляет, как правило, не менее 50% от общего числа высоковольтных выключателей.

Важное место в диагностике высоковольтных выключателей занимает тепловизионный контроль. С применением инфракрасной техники каждый год выявляется значительное количество дефектов на электрооборудованиях подстанций. В настоящее время на каждый тип выключателя разработана своя методика тепловизионного контроля.

Таблица 1. Информация, получаемая при ИК-контроле выключателя

Контролируемый узел при ИК-контроле

Объем получаемой информации

Маломасляные выключатели 6 — 10 кВ серий ВМГ-133, ВМП-10 и им подобные: шина — токоведущий вывод вывод — гибкая связь гибкая связь — свеча

Тепловизоры или пирометры

Измерение температуры узла контактной системы MB

Маломасляные выключатели 110 кВ и выше серий ВМТ, МГ-110 и им подобные: шина — токоведущий вывод токопровод неподвижного контакта к фланцу MB

Измерение температуры узла контактной системы выключателя Снятие термограммы для места и

Баковые масляные выключатели: шина — токоведущий вывод

Воздушные выключатели: шина — токоведущий вывод токоведущее соединение модулей ВВ дугогасительная камера емкостной делитель напряжения

Вакуумные и элегазовые выключатели: шина — токоведущий вывод

Следует отметить, что диагностика масляных выключателей требует измерения большего числа параметров и трудозатрат ввиду их конструктивных особенностей. Среди многочисленных технических параметров выключателей особое значение для их функционального назначения имеют временные параметры контактной системы и скоростные характеристики подвижных частей.

Качество работы контактной системы выключателей определяет в первую очередь совокупность следующих основных временных параметров: время включения и отключения, разновременность включения фаз, длительность и характер дребезга контактов. Эти параметры должны строго контролироваться в условиях эксплуатации на соответствие допустимым (нормируемым) значениям. Заметим, что работа выключателя зависит от состояния его механических частей, правильности регулировок, настроек, степени износа, наличия развивающихся дефектов, точности изготовления деталей и качества сборки на заводе-изготовителе.

Так, в режиме отключения чёткая одновременность разрыва дугогасительных контактов в каждой фазе высоковольтного выключателя обеспечивает равномерное распределение энергии дуги на разные плечи контактной системы и быстрое её гашение, что в свою очередь снижает степень износа и гарантирует длительный ресурс работы выключателя. Сокращение времени дребезга контактов также уменьшает их эрозию и увеличивает ресурс контактной системы. Одновременно замыкающиеся главные контакты выключателей обеспечивают предсказуемость и регулярность бросков тока намагничивания фаз трансформатора, а также исключают неполнофазные режимы электроустановок, что важно для правильной работы пусковых измерительных органов устройств РЗА. Сверхнормативное значение разновременности работы контактов выключателей может приводить также к перенапряжениям.

Традиционные методы и устройства для измерения параметров и характеристик высоковольтного выключателя, как правило, трудоёмки, результаты измерений фиксируются вручную, а точность определения тех или иных параметров зависит от субъективных факторов, а также от совершенства технических средств измерения.

Так, разновременность замыкания подвижных контактов с неподвижными контактами обычно осуществляется косвенно, по разнице линейных перемещений подвижных контактов в разных фазах в камере выключателя, и производится медленно, ручным включением выключателя с помощью рычага или домкрата. Фиксация касания контактов в каждой фазе осуществляется оператором по загоранию соответствующих ламп в специальной схеме электрической цепи и поэтапной отметкой карандашом положений направляющей трубы на изолирующей штанге. Затем линейкой вручную производятся измерения положений подвижных контактов.

Читайте так же:
Путевые выключатели для дверей

Для определения разновременности касания контактов выключателя с помощью данной методики необходим предварительный слив трансформаторного масла из его бака и ручное производство измерений. Процесс измерения не автоматизирован и не позволяет определять собственное время включения и отключения выключателя в рабочем режиме, а также выявить при этом дребезг контактов. В эксплуатационной практике нередки случаи, когда необходимо оперативно и без слива трансформаторного масла оценить разновременность касания контактов высоковольтного выключателя, например после аварийного отключения.

Если подвижные контакты выключателя всех трёх фаз при включении одновременно касаются неподвижных контактов, а при выключении одновременно размыкаются и если отсутствует обрыв шунтирующих сопротивлений, то в ряде случаев отпадает необходимость традиционной методики вскрытия выключателя со сливом диэлектрической жидкости. Известно, например, что в выключателях типов У-110 и МКП-110 кВ в баке одной фазы находится 2.7 т трансформаторного масла. Поэтому слив трансформаторного масла из баков выключателя и последующая его заливка после ремонта требуют больших трудозатрат, наличия дополнительных механизмов, ёмкости для слива масла, маслонасоса, шланга для перекачки диэлектрической жидкости и т. д. При этом возникает угроза загрязнения окружающей среды из-за неосторожных действий персонала.

Для измерения скорости контактов в нашей стране наиболее распространён метод, основанный на формировании периодического колебательного процесса с помощью вибрографа с пишущим узлом и штанги с диаграммной лентой, которая кинематически связана с подвижным контактом коммутационного аппарата. Этот метод также требует большого объёма подготовительных и восстановительных работ.

Существующий способ для измерения времени собственного включения и отключения высоковольтного выключателя предполагает применение источника постоянного и переменного напряжения, миллисекундомера и трёхполюсного автоматического выключателя. Временные параметры по этому способу определяются для каждой фазы отдельно. Очевидно, данным способом невозможно оценить разновременность включения и отключения разных фаз выключателя, а также выявить отскоки и дребезг контактов. Общим недостатком вышеназванных способов является ручное производство измерений, отсутствие автоматизации обработки данных измерений, невозможность хранения полученных результатов измерений для последующего архивирования и создания электронной базы данных. Существующие устройства для оценки технического состояния масляных выключателей типов ПКВ/М5А и ПКВ/М6 измеренные характеристики выдают в виде таблиц, а не в виде осциллограмм. Поэтому для персонала, обслуживающего высоковольтные выключатели, получение реальных осциллограмм их характеристик является более информативным и более ценным сведением, чем получение данных в виде таблиц. На базе многоканального цифрового регистратора достаточно легко удаётся производить контроль многих характеристик высоковольтных выключателей с применением новых методов и встроенного программного обеспечения в вычислительном блоке цифрового регистратора.

Приборы и системы для испытания выключателей класса напряжения 0.4. 800кВ. Приборы и системы для испытания высоковольтных выключателей всех классов напряжения. Проводится измерение всех рабочих параметров, соответствующих паспортным режимам. Системы диагностики состояния выключателей разработаны для оперативной оценки технического состояния и определения остаточного ресурса высоковольтных выключателей различных типов и марок.

ТМ1600/МА61 — Измеритель временного цикла выключателя

Система ТМ1600 измеряет временной цикл выключателя (до 800 кВ). Каналы времени записывают время включения и отключения главных контактов, контактов с предвключенными резисторами и других вспомогательных контактов. Каналы независимы, поэтому, можно измерять временные характеристики контактов, последовательно соединенные камеры выключателя, не разъединяя их. Блок ТМ1600 обеспечивает до 24 каналов. Если требуется большее число каналов, могут использоваться один или несколько дополнительных блоковТМ1600, обеспечивающих синхронизированные измерения. Имеется возможность выбора между различными последовательностями управляющих импульсов. Устанавливается время задержки между импульсами. Блок может быть оснащен функцией длительного контроля, при которой ТМ1600 запускается, как только изменяется состояние одного из каналов или распознается подача напряжения на независимый вход импульсов запуска.

Масляные выключатели

1.8.18. Масляные выключатели всех классов напряжения испытываются в объеме, предусмотренном настоящим параграфом.

1. Измерение сопротивления изоляции:

а) подвижных и направляющих частей, выполненных из органических материалов. Производится мегаомметром на напряжение 2,5 кВ.

Сопротивление изоляции не должно быть менее значений, приведенных ниже:

выключателя, кВ 3-10 15-150 220-500

Сопротивление изоляции, МОм 1000 3000 5000

б) вторичных цепей, электромагнитов включения и отключения и т.п. производится в соответствии с 1.8.34.

2. Испытание вводов. Производится в соответствии с 1.8.31.

3. Оценка состояния внутрибаковой изоляции и изоляции дугогасительных устройств. Производится для выключателей 35 кВ с установленными вводами путем измерения тангенса угла диэлектрических потерь изоляции. Внутрибаковая изоляция подлежит сушке, если измеренное значение тангенса в 2 раза превышает тангенс угла диэлектрических потерь вводов, измеренный при полном исключении влияния внутрибаковой изоляции дугогасительных устройств, т. е. до установки вводов в выключатель.

Читайте так же:
Что значит выключатель с двух мест

Таблица 1.8.15. Испытательное напряжение промышленной частоты для внешней изоляции аппаратов

Класс напряжения, кВ

Испытательное напряжение, кВ, для аппаратов с изоляцией

нормальной из органических материалов

облегченной из органических материалов

4. Испытание изоляции повышенным напряжением промышленной частоты:

а) изоляции выключателей относительно корпуса или опорной изоляции. Производится для выключателей напряжением до 35 кВ. Испытательное напряжение для выключателей принимается в соответствии с данными табл. 1.8.15. Продолжительность приложения нормированного испытательного напряжения 1 мин;

б) изоляции вторичных цепей и обмоток электромагнитов включения и отключения. Значение испытательного напряжения 1 кВ. Продолжительность приложения нормированного испытательного напряжения 1 мин.

5. Измерение сопротивления постоянному току:

а) контактов масляных выключателей. Измеряется сопротивление токоведущей системы полюса выключателя и отдельных его элементов. Значение сопротивления контактов постоянному току должно соответствовать данным завода-изготовителя;

б) шунтирующих резисторов дугогасительных устройств. Измеренное значение сопротивления должно отличаться от заводских данных не более чем на 3 %.

в) обмоток электромагнитов включения и отключения, значение сопротивлений обмоток должно соответствовать данным заводов-изготовителей.

6. Измерение скоростных и временных характеристик выключателей. Измерение временных характеристик производится для выключателей всех классов напряжения. Измерение скорости включения и отключения следует производить для выключателей 35 кВ и выше, а также независимо от класса напряжения в тех случаях, когда это требуется инструкцией завода-изготовителя. Измеренные характеристики должны соответствовать данным заводов-изготовителей.

7. Измерение хода подвижных частей (траверс) выключателя, вжима контактов при включении, одновременности замыкания и размыкания контактов. Полученные значения должны соответствовать данным заводов-изготовителей.

8. Проверка регулировочных и установочных характеристик механизмов, приводов и выключателей. Производится в объеме и по нормам инструкций заводов-изготовителей и паспортов для каждого типа привода и выключателя.

9. Проверка действия механизма свободного расцепления. Производится на участке хода подвижных контактов при выключении — от момента замыкания первичной цепи выключателя (с учетом промежутка между его контактами, пробиваемого при сближении последних) до полного включения положения. При этом должны учитываться специфические требования, обусловленные конструкцией привода и определяющие необходимость проверки действия механизма свободного расцепления при поднятом до упора сердечнике электромагнита включения или при незаведенных пружинах (грузе) и т.д.

10. Проверка напряжения (давления) срабатывания приводов выключателей. Производится (без тока в первичной цепи выключателя) с целью определения фактических замечаний напряжения на зажимах электромагнитов приводов или давления сжатого воздуха пневмоприводов, при которых выключатели сохраняют работоспособность, т. е. выполняют операции включения и отключения от начала до конца. При этом временные и скоростные характеристики могут не соответствовать нормируемым значениям.

Напряжение срабатывания должно быть на 15 — 20 % меньше нижнего предела рабочего напряжения на зажимах электромагнитов приводов, а давление срабатывания пневмоприводов — на 20 — 30 % меньше нижнего предела рабочего давления. Работоспособность выключателя с пружинным приводом необходимо проверить при уменьшенном натяге включающих пружин согласно указаниям инструкций заводов-изготовителей.

Масляные выключатели должны обеспечивать надежную работу при следующих значениях напряжения на зажимах электромагнитов приводов: при отключении 65 — 120 %, номинального; при включении выключателей 80 — 110 %, номинального (с номинальным током включения до 50 кА) и 85 — 110 % номинального (с номинальным током включения более 50 кА). Для выключателей с пневмоприводами диапазон изменения рабочего давления должен быть не менее 90 — 110 % номинального. При указанных значениях нижних пределов рабочего напряжения (давления) приводов выключатели (без тока в первичной цепи) должны обеспечивать нормируемые заводами-изготовителями для соответствующих условий временные и скоростные характеристики.

11. Испытание выключателя многократными включениями и отключениями. Многократные опробования масляных выключателей производятся при напряжении на зажимах электромагнитов: включения 110, 100, 80 (85) % номинального и минимальном напряжении срабатывания; отключения 120, 100, 65 % номинального и минимальном напряжении срабатывания.

Количество операций при пониженном и повышенном напряжениях должно быть 3 — 5, а при номинальном напряжении — 10.

Кроме того, выключатели следует подвергнуть 3-5-кратному опробованию в цикле В — О (без выдержки времени), а выключатели, предназначенные для работы в режиме АПВ, также 2-3-кратному опробованию в циклах О-В и О-В-О. Работа выключателя в сложных циклах должна проверяться при номинальном и пониженном до 80 % (85 %) номинального напряжения на зажимах электромагнитов приводов.

12. Испытание трансформаторного масла выключателей. У баковых выключателей всех классов напряжений и малообъемных выключателей 110 кВ и выше испытание масла производится до и после заливки масла в выключатели.

У малообъемных выключателей до 35 кВ масло испытывается до заливки в дугогасительные камеры. Испытание масла производится в соответствии с 1.8.33.

Читайте так же:
Типы защит автоматических выключателей

13. Испытание встроенных трансформаторов тока. Производится в соответствии с 1.8.17.

Приборы для измерения скоростных характеристик масляных выключателей

Глава 1.8. НОРМЫ ПРИЕМО-СДАТОЧНЫХ ИСПЫТАНИЙ

1.8.18. Масляные выключатели всех классов напряжения испытываются в объеме, предусмотренном настоящим параграфом.

1. Измерение сопротивления изоляции:

а) подвижных и направляющих частей, выполненных из органических материалов. Производится мегаомметром на напряжение 2,5 кВ.

Сопротивление изоляции не должно быть менее значений, приведенных ниже:

#G0 Номинальное напряжение выключателя, кВ + .

Сопротивление изоляции, МОм . +++++ .

б) вторичных цепей, электромагнитов включения и отключения и т. п. Производится в соответствии с 1.8.34.

2. Испытание вводов. Производится в соответствии с 1.8.31.

3. Оценка состояния внутрибаковой изоляции и изоляции дугогасительных устройств. Производится для выключателей 35 кВ с установленными вводами путем измерения тангенса угла диэлектрических потерь изоляции. Внутрибаковая изоляция подлежит сушке, если измеренное значение тангенса в 2 раза превышает тангенс угла диэлектрических потерь вводов, измеренный при полном исключении влияния внутрибаковой изоляции дугогасительных устройств, т. е. до установки вводов в выключатель.

4. Испытание изоляции повышенным напряжением промышленной частоты:

а) изоляции выключателей относительно корпуса или опорной изоляции. Производится для выключателей напряжением до 35 кВ. Испытательное напряжение для выключателей принимается в соответствии с данными табл. 1.8.15. Продолжительность приложения нормированного испытательного напряжения 1 мин;

Таблица 1.8.15. Испытательное напряжение промышленной

частоты для внешней изоляции аппаратов

Испытательное напряжение, кВ, для аппаратов с изоляцией

Класс напряжения, кВ

нормальной из органических материалов

облегченной из органических материалов

б) изоляции вторичных цепей и обмоток электромагнитов включения и отключения. Значение испытательного напряжения 1 кВ. Продолжительность приложения нормированного испытательного напряжения 1 мин.

5. Измерение сопротивления постоянному току:

а) контактов масляных выключателей. Измеряется сопротивление токоведущей системы полюса выключателя и отдельных его элементов. Значение сопротивления контактов постоянному току должно соответствовать данным завода-изготовителя;

б) шунтирующих резисторов дугогасительных устройств. Измеренное значение сопротивления должно отличаться от заводских данных не более чем на 3%;

в) обмоток электромагнитов включения и отключения, значение сопротивлений обмоток должно соответствовать данным заводов-изготовителей.

6. Измерение скоростных и временных характеристик выключателей. Измерение временных характеристик производится для выключателей всех классов напряжения. Измерение скорости включения и отключения следует производить для выключателей 35 кВ и выше, а также независимо от класса напряжения в тех случаях, когда это требуется инструкцией завода-изготовителя. Измеренные характеристики должны соответствовать данным заводов-изготовителей.

7. Измерение хода подвижных частей (траверс) выключателя, вжима контактов при включении, одновременности замыкания и размыкания контактов. Полученные значения должны соответствовать данным заводов — изготовителей.

8. Проверка регулировочных и установочных характеристик механизмов, приводов и выключателей. Производится в объеме и по нормам инструкций заводов-изготовителей и паспортов для каждого типа привода и выключателя.

9. Проверка действия механизма свободного расцепления. Производится на участке хода подвижных контактов при выключении — от момента замыкания первичной цепи выключателя (с учетом промежутка между его контактами, пробиваемого при сближении последних) до полного включения положения. При этом должны учитываться специфические требования, обусловленные конструкцией привода и определяющие необходимость проверки действия механизма свободного расцепления при поднятом до упора сердечнике электромагнита включения или при незаведенных пружинах (грузе) и т. д.

10. Проверка напряжения (давления) срабатывания приводов выключателей. Производится (без тока в первичной цепи выключателя) с целью определения фактических замечаний напряжения на зажимах электромагнитов приводов или давления сжатого воздуха пневмоприводов, при которых выключатели сохраняют работоспособность, т. е. выполняют операции включения и отключения от начала до конца. При этом временные и скоростные характеристики могут не соответствовать нормируемым значениям.

Напряжение срабатывания должно быть на 15-20% меньше нижнего предела рабочего напряжения на зажимах электромагнитов приводов, а давление срабатывания пневмоприводов — на 20-30% меньше нижнего предела рабочего давления. Работоспособность выключателя с пружинным приводом необходимо проверить при уменьшенном натяге включающих пружин согласно указаниям инструкций заводов-изготовителей.

Масляные выключатели должны обеспечивать надежную работу при следующих значениях напряжения на зажимах электромагнитов приводов: при отключении 65-120% номинального; при включении выключателей 80-110% номинального (с номинальным током включения до 50 кА) и 85-110% номинального (с номинальным током включения более 50 кА). Для выключателей с пневмоприводами диапазон изменения рабочего давления должен быть не менее 90-110% номинального. При указанных значениях нижних пределов рабочего напряжения (давления) приводов выключатели (без тока в первичной цепи) должны обеспечивать нормируемые заводами-изготовителями для соответствующих условий временные и скоростные характеристики.

11. Испытание выключателя многократными включениями и отключениями. Многократные опробования масляных выключателей производятся при напряжении на зажимах электромагнитов: включения 110, 100, 80 (85)% номинального и минимальном напряжении срабатывания; отключения 120, 100, 65% номинального и минимальном напряжении срабатывания.

Читайте так же:
Номинальные токи высоковольтных выключателей

Количество операций при пониженном и повышенном напряжениях должно быть 3-5, а при номинальном напряжении — 10.

Кроме того, выключатели следует подвергнуть 3-5-кратному опробованию в цикле В-О (без выдержки времени), а выключатели, предназначенные для работы в режиме АПВ, также 2-3-кратному опробованию в циклах О-В и О-В-О. Работа выключателя в сложных циклах должна проверяться при номинальном и пониженном до 80% (85%) номинального напряжения на зажимах электромагнитов приводов.

12. Испытание трансформаторного масла выключателей. У баковых выключателей всех классов напряжений и малообъемных выключателей 110 кВ и выше испытание масла производится до и после заливки масла в выключатели.

У малообъемных выключателей до 35 кВ масло испытывается до заливки в дугогасительные камеры. Испытание масла производится в соответствии с 1.8.33.

13. Испытание встроенных трансформаторов тока. Производится в соответствии с 1.8.17.

1.8.19. Воздушные выключатели всех классов напряжения испытываются в объеме, предусмотренном настоящим параграфом.

Таблица 1.8.16. Наименьшее допустимое сопротивление опорной изоляции и изоляции подвижных частей воздушных выключателей

Сопротивление изоляции, МОм, при номинальном напряжении выключателя, кВ

Опорный изолятор, воздухопровод и тяга (каждое в отдельности), изготовленные из фарфора

Тяга, изготовленная из органических материалов

1. Измерение сопротивления изоляции:

а) опорных изоляторов, изоляторов гасительных камер и отделителей и изолирующих тяг выключателей всех классов напряжений. Производится мегаомметром на напряжение 2,5 кВ или от источника напряжения выпрямленного тока.

В случае необходимости измерение сопротивления изоляции опорных изоляторов, изоляторов гасительных камер и отделителей следует производить с установкой охранных колец на внешней поверхности.

Сопротивление изоляции должно быть не ниже значений, приведенных в табл. 1.8.16.

б) вторичных цепей, обмоток электромагнитов включения и отключения. Производится в соответствии с 1.8.34.

2. Испытание повышенным напряжением промышленной частоты:

а) изоляции выключателей. Обязательно для выключателей до 35 кВ. Опорную цельнофарфоровую изоляцию выключателей следует испытывать повышенным напряжением промышленной частоты в соответствии с табл. 1.8.17. Продолжительность приложения нормированного испытательного напряжения 1 мин.

Изоляция выключателей, состоящая из многоэлементных изоляторов, испытывается в соответствии с 1.8.32;

б) изоляции вторичных цепей и обмоток электромагнитов управления. Производится в соответствии с 1.8.34.

3. Измерение сопротивления постоянному току:

а) контактов воздушных выключателей всех классов напряжения. Измерению подлежит сопротивление контактов каждого элемента гасительной камеры, отделителя, ножа и т. п. в отдельности. Наибольшие допустимые значения сопротивления контактов воздушных выключателей приведены в табл. 1.8.17.

б) обмоток электромагнитов включения и отключения выключателей. Устанавливается для каждого типа выключателей согласно табл. 1.8.18 или данным завода-изготовителя.

в) делителей напряжения и шунтирующих резисторов выключателя. Для них нормы устанавливаются по данным завода-изготовителя.

Таблица 1.8.17. Наибольшее допустимое сопротивление постоянному току контактов воздушных выключателей на номинальный ток 2 кА

Методы и средства диагностики оборудования ВН — Контроль выключателей

Наиболее часто встречающиеся дефекты выключателей: отказы функционирования, ухудшение изоляции и недопустимые нагревы токоведущих частей. Специфическим дефектом газонаполненных конструкций является потеря герметичности.
Потеря герметичности выявляется, как правило, штатными средствами контроля (по снижению давления, повышенному расходу газа и т.п.). Для выявления других дефектов необходимы специальные испытания.

Проверка функционирования.

Контроль выключателей

Схема осциллографирования работ контактов полюса выключателя

Отказы функционирования в значительной мере являются следствием нарушений в механической системе. К отказам механической системы, число которых может достигать 70-80% всего количества отказов, ведут поломки или изменение характеристик пружин, увеличение трения в рабочем механизме, повреждения клапанов, уменьшение усилий приводов и т.п.
Контроль общего состояния механической системы возможен только путем проверки функционирования выключателя. Проверка производится на выведенном из работы аппарате.
В объем проверки входят контроль регулировочных и установочных характеристик приводов, определение наименьшего напряжения или давления воздуха (масла), обеспечивающего нормальное выполнение рабочих циклов, а также измерение временных и скоростных характеристик работы выключателя.
Состояние механизмов можно оценить по усилиям, необходимым для их перемещения. Усилие на штанге привода, связанной с контактной системой, при медленном ее перемещении позволяет выявить появление недопустимых люфтов, разрегулировок, ухудшение смазки, износ контактов.
Измерения при проведении операций позволяют определить время срабатывания и его разброс по фазам, перемещения, скорости и ускорения подвижных частей, расход воздуха на операцию, потребление привода, а также ряд других параметров, характеризующих состояние механизмов (в зависимости от конструкции выключателя).
Временные характеристики определяются осциллографированием работы контактов. Характеристики движения механических частей могут быть получены путем снятия виброграммы или преобразования их перемещения в последовательность импульсов, интервалы между которыми соответствуют скорости движения. Такое преобразование производится при помощи растра, связанного с контролируемым механизмом. Применяются также электромагнитные датчики скорости движения.

Читайте так же:
Проходной двухклавишный выключатель макел схема подключения

Рис. 7.24. Схема осциллографирования работ контактов полюса выключателя ВВБ-220: SA1 — главные контакты; SA2 — вспомогательные контакты; Rш — шунтирующие резисторы; PG — гальванометры осциллографа GB и Rβ — источники питания и резисторы схемы осциллографирования
Проверка функционирования включает Также многократное опробование выключателя во всех режимах.
Приведем примеры определения временных характеристик при контроле воздушных и масляных выключателей.
Для проверки воздушных выключателей производится опробование с одновременным осциллографированием работы контактов и тока в цепи электромагнитов управления (рис. 7.24). Осциллографирование производится со скорость») определяемой быстродействием выключателя (обычно отметка времени на осциллограмме — не реже 10 мс).
По осциллограммам (рис. 7.25) определяются собственное время отключения (т0) и включение (Тв), разновременность размыкания главных и вспомогательных контактов (tp.r и (р.в). разновременность смыкания главных и вспомогательных контактов (tc. г. и tс.в). запаздывание размыкания и включения вспомогательных контактов (tз .р. и tз.в.), а также ток привода управления (длительность и характер изменения).
Эти параметры, а также выполнение сложных циклов работы (OB, ОВО, ВО) определяют работоспособность выключателя.


Рис. 7.25. Осциллограммы проверки выключателя ВВБ-220:
а — отключение; б — включение; 1, 2 — главные контакты; 3—6 — вспомогательные контакты; 7 — ток электромагнита; S — отметка времени. Номера осциллограмм соответствуют номерам гальванометров (рис. 7.24)
Виброграмма контроля масляного выключателя
Рис. 7.26. Виброграмма контроля масляного выключателя. Наибольшая скорость: L1/t1. Скорость при замыкании контактов: L2/ t2

Измерение скоростей включения и отключения масляных выключателей позволяет проверить правильность регулировки всей механической системы. Измерение производится путем снятия виброграммы (рис. 7.26). Виброграмма записывается вибрографом — электромагнитом, питаемым током частотой 50 Гц, к якорю которого прикреплено пишущее устройство. Во время движения траверсы включателя записывается синусоидальная кривая, длина периода которой на виброграмме определяется скоростью подвижных частей. Одновременно эта синусоида дает отметку времени.
При расшифровке виброграммы определяются моменты замыкания или размыкания контактов и скорость движения подвижных частей (наибольшая, в моменты замыкания или размыкания). Скорость определяется путем деления длины участков виброграммы на время (каждый период виброграммы — 20 мс).
Дефекты работы привода можно выявить путем осциллографирования тока его потребления. Контроль ведется по изменению осциллограммы и по значению тока в заданные моменты времени.

Контроль изоляции.

Испытания изоляционной конструкции производятся путем приложения повышенного напряжения, а также измерения сопротивления или тока проводимости. Контролируется также изоляционное масло или другая изолирующая или защитная среда.

В выключателях и других устройствах, где в качестве изолирующей и защитной среды применен элегаз (в КРУЭ), необходимы дополнительные методы контроля. Каждый такой аппарат помещен в газоплотной оболочке, заполненной элегазом при определенном давлении, большем, чем атмосферное. Внутри оболочек имеются сорберы, обеспечивающие поддержание низкой влажности элегаза и поглощение продуктов его разложения (в выключателях). Хотя сорберы рассчитываются на поддержание требуемых характеристик элегаза в течение всего межремонтного периода, за его состоянием нужен контроль.
Практика показала, что испытания повышенным напряжением, проводимые при монтаже, не обеспечивают достаточной надежности изоляции устройств с элегазом. Мелкие частицы, оставшиеся в замкнутом объеме оболочки или возникшие при работе механизмов, могут стать причиной ЧР в элегазе. Поэтому надо контролировать разряды.
Одним из основных методов контроля КРУЭ является проверка элегаза. Контролируются пробивное напряжение, влажность и наличие продуктов разложения. Пробивное напряжение определяется в специальном сосуде, заполняемом пробой из контролируемого объема. Путем контроля продуктов разложения элегаза можно обнаружить длительно протекающие процессы ЧР и недопустимые нагревы токоведущих частей и контактов.
Химические методы контроля (по продуктам разложения элегаза) позволяют обнаруживать лишь длительно протекающие ЧР с интенсивностью в сотни пикокулон. Более чувствительные акустические методы (порог чувствительности — десятки пикокулон), однако большой уровень помех от внешних шумов препятствует проведению измерений простыми приборами. Наибольшую чувствительность обеспечивают электрические методы измерений, использующие специальные электроды, встроенные в конструкцию. Контроль электрическими методами можно вести, используя также электромагнитные датчики, располагаемые на поверхности оболочки, или измеряя на ней разность потенциалов, вызванную импульсами ЧР.

Контроль нагрева.

Недопустимые нагревы токоведущих частей и контактов могут быть обнаружены по изменению температуры наружных поверхностей выключателей.
Наиболее эффективны при этом радиометрические методы контроля. При отключении оборудования дефекты, вызывающие повышенное выделение тепла, выявляются путем измерения сопротивления токоведущего тракта или его частей.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector