Sanitaryhygiene.ru

Санитары Гигиены
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

46. Вольт-амперная характеристика фотоэлемента, ток насыщения и запирающее напряжение (от каких параметров они зависят)

46. Вольт-амперная характеристика фотоэлемента, ток насыщения и запирающее напряжение (от каких параметров они зависят).

Вольт-амперная характеристика фотоэлемента – зависимость фототока I, образуемого потоком электронов, испускаемых катодом под действием света, от напряжения U между электродами.

Вольт-амперная характеристика, соответствующая двум различным освещенностям катода( частота света в обоих случаях одинакова), приведена на рисунке выше. По мере увеличения U фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями. Максимальное значение тока — фототок насыщения — определяется таким значением U, при котором все электроны, испускаемые катодом, достигают анода:

Где n – число электронов, испускаемых катодом за 1 с.

Из вольт-амперной характеристики следует, что при U = 0 фототок не исчезает. Следовательно, электроны, выбитые светом из катода, обладают некоторой начальной скоростью v, а значит, и отличной от нуля кинетической энергией и могут достигнуть анода без внешнего поля. Для того чтобы фототок стал равным пулю, необходимо приложить задерживающее напряжение U. При U = U ни один из электронов, даже обладающий при вылете из катода максимальной скоростью vmax, не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

Т.е., измерив задерживающее напряжение U, можно определить максимальные значения скорости кинетической энергии фотоэлектронов.

Экспериментально показано, что задерживающий потенциал зависит от частоты света, которым облучают катод фотоэлемента, и не зависит от величины падающего светового потока. При увеличении частоты облучающего света задерживающий потенциал возрастает

Зависимость силы фототока от приложенной разности потенциалов при освещении катода светом различной частоты при одинаковом числе вырванных электронов (v2> v1> v)

На опыте обнаружено, что кинетическая энергия вырываемых светом электронов зависит только от частоты падающего света и не зависит от величины светового потока. Если частота света меньше определенной для данного вещества минимальной частоты v, то фотоэффекта не происходит. Частоту v называют красной границей фотоэффекта. Задерживающий потенциал, соответствующий красной границе фотоэффекта, равен нулю.

Краткий итог: фототок насыщения зависит только от интенсивности, а запирающее напряжение U зависит от кинетической энергии вырываемых светом электронов, в свою очередь кинетическая энергия зависит только от частоты света.

47. Работа выхода при внешнем фотоэффекте, красная граница фотоэффекта.

По Эйнштейну, каждый квант поглощается только одним электроном. Поэтому число вырванных фотоэлектронов должно быть пропорционально интенсивности света (I закон фотоэффекта). Безынерционность фотоэффекта объясняется тем, что передача энергии при столкновении фотона с электроном происходит почти мгновенно.

Энергия падающего фотона расходуется на совершение электроном работы выхода А из металла и на сообщение вылетевшему фотоэлектрону кинетической энергии . По закону сохранения энергии,

(1)

Уравнение (1) называется уравнением Эйнштейна для внешнего фотоэффекта.

Уравнение Эйнштейна позволяет объяснить II и III законы фотоэффекта. Из (1) непосредственно следует, что максимальная кинетическая энергия фотоэлектрона линейно растет с увеличением частоты падающего излучения и не зависит от его интенсивности (числа фотонов), так как ни A, ни v от интенсивности света не зависят (II закон фотоэффекта). Так как с уменьшением частоты света кинетическая энергия фотоэлектронов уменьшается (для данного металла А=const), то при некоторой достаточно малой частоте v = v кинетическая энергия фотоэлектронов станет равной нулю и фотоэффект прекратится (III закон фотоэффекта). Согласно изложенному, из (1) получим, что

(2)

и есть красная граница фотоэффекта для данного металла. Она зависит лишь от работы выхода электрона, т.е. от химической природы вещества и состояния его поверхности. Выражение (1) можно записать в виде

При освещении выделяют ток

1. Определяем освещенность

От любого источника света распространяется световой поток. Чем больший световой поток упадет на поверхность того или иного тела, тем лучше его видно.

  • Физическая величина, численно равная световому потоку, падающему на еди­ницу освещенной поверхности, называется освещенностью.

Освещенность обозначается символом E и определяется по формуле:

Формула
где Ф — световой поток; S — площадь поверхности, на которую падает све­товой поток.

В СИ за единицу освещенности принят люкс (лк) (от латин. Iux — свет).

Один люкс — это освещенность такой поверхности, на один квадрат­ный метр которой падает световой поток, равный одному люмену:
Формула

Приводим некоторые значения освещенности поверхности (вблизи земли).

• солнечными лучами в полдень (на средних широтах) — 100 000 лк;
• солнечными лучами на открытом месте в пасмурный день — 1000 лк;
• солнечными лучами в светлой комнате (вблизи окна) — 100 лк;
• на улице при искусственном освещении — до 4 лк;
• от полной луны — 0,2 лк;
• от звездного неба в безлунную ночь — 0,0003 лк.

Читайте так же:
Область применения кабелей проводов шнуров кабелей

2. Выясняем, от чего зависит освещенность

Наверное, все вы видели шпионские фильмы. Представьте: какой-нибудь герой при свете слабого карманного фонарика вниматель­но просматривает документы в поисках необходимых «секретных данных». Вообще, чтобы читать, не напрягая глаз, нужна освещенность не меньше 30 лк (рис. 3.9), а это немало. И как наш герой добивается такой освещенности?

Во-первых, он подносит фонарик как мож­но ближе к документу, который просматривает. Значит, освещенность зависит от расстояния от источника света до освещаемого предмета.

Во-вторых, он располагает фонарик пер­пендикулярно к поверхности документа, а это значит, что освещенность зависит от угла, под которым свет падает на поверхность.

Чтобы прочитать доста­точно мелкий шрифт, нужно уве­личить освещенность страницы

Рис. 3.9. Чтобы прочитать доста­точно мелкий шрифт, нужно уве­личить освещенность страницы

Площадь освещенной поверхности увеличивается

Рис. 3.10. В случае увеличения расстояния до источника света площадь освещенной поверхности увеличивается

И в конце концов, для лучшего освещения он просто может взять более мощный фонарик, так как очевидно, что с увеличением силы света источника увеличивается освещенность.

Выясним, как изменяется освещенность в случае увеличения расстояния от точечного источника света до освещаемой поверхности. Пусть, например, световой поток от точечного источника падает на экран, расположенный на определенном расстоянии от источника. Если увеличить расстояние вдвое, можно заметить, что один и тот же световой поток будет освещать в 4 раза Ф большую площадь. Поскольку Формула, то освещенность в этом случае уменьшится в 4 раза. Если увеличить расстояние в 3 раза, освещенность уменьшится в 9 — З 2 раз. Т. е. освещенность обратно пропорциональна квадрату расстояния от точечного источника света до поверхности (рис. 3 10).

Если пучок света падает перпендикулярно к поверхности, то световой поток распределяется на минимальной площади. В случае увеличения угла падения света увеличивается площадь, на которую падает световой поток, поэтому ос­вещенность уменьшается (рис. 3.11). Мы уже говорили, что в случае увеличе­ния силы света источника освещенность увеличивается. Экспериментально ус­тановлено, что освещенность прямопропорциональна силе света источника.

(Освещенность уменьшается, если в воздухе есть частички пыли, тума­на, дыма, так как они отражают и рассеивают определенную часть световой энергии.)

Если поверхность расположена перпендикулярно к направлению распро­странения света от точечного источника и свет распространяется в чистом воздухе, то освещенность можно определить по формуле:

Формула
где I — сила света источника, R — расстояние от источника света до поверх­ности.

Задание

Рис. 3.11 В случае увеличения угла падения параллельных лучей на поверхность (а1 < а2 < а3) освещенность этой поверхности уменьшается, поскольку падающий световой поток распределя­ется по все большей площади поверхности


3. Учимся решать задачи

Стол освещен лампой, расположенной на высоте 1,2 м прямо над сто­лом. Определите освещенность стола непосредственно под лампой, если пол­ный световой поток лампы составляет 750 лм. Лампу считайте точечным источником света.

Задача

  • Подводим итоги

Физическая величина, численно равная световому потоку Ф, пада­ющему на единицу освещаемой поверхности S, называется освещенностью Формула.В СИ за единицу освещенности принят люкс (лк).

Освещенность поверхности E зависит: а) от расстояния R до освещаемой поверхности Формула б) от угла, под которым свет падает на поверхность (чем меньше угол падения, тем больше освещенность); в) от силы света I источника (E — I ) ; г) прозрачности среды, в которой распространяется свет, проходя от источника до поверхности.

  • Контрольные вопросы

1. Что называют освещенностью? В каких единицах она измеряется?
2. Можно ли читать, не напрягая глаз, в светлой комнате? на улице при искусственном освещении? при полной луне?

3. Как можно уве­личить освещенность определенной поверхности?

4. Расстояние от точечного источника света до поверхности увеличили в 2 раза. Как при этом изменилась освещенность поверхности?

5. Зависит ли ос­вещенность поверхности от силы света источника, который освещает эту поверхность? Если зависит, то как?

  • Упражнения

1. Почему освещенность горизонтальных поверхностей в полдень больше, чем утром и вечером?

2. Известно, что освещенность от нескольких источников равняется сумме освещенностей от каждого из этих источников отдельно. Приведите примеры применения этого правила на практике.

3. После изучения темы «Освещенность» семиклассники решили уве­личить освещенность своего рабочего места:

Читайте так же:
Сгорел выключатель с подсветкой

— Петя заменил лампочку в своей настольной лампе на лампочку большей мощности;
— Наташа поставила еще одну настольную лампу;
— Антон поднял люстру, которая висела над его столом, выше;
— Юрий расположил настольную лампу таким образом, что свет начал падать практически перпендикулярно к столу.

Какие из учеников поступили правильно? Обоснуйте ответ.

4. В ясный полдень освещенность поверхности Земли прямыми сол­нечными лучами составляет 100 000 лк. Определите световой по­ток, падающий на участок площадью 100 см 2 .

5. Определите освещенность от электрической лампочки мощностью 60 Вт, расположенной на расстоянии 2 м. Довольно ли этой осве­щенности для чтения книги?

6. Две лампочки, поставленные рядом, освещают экран. Расстояние от лампочек до экрана I м. Одну лампочку выключили. На сколько нужно приблизить экран, чтобы его освещенность не изменилась?

  • Экспериментальное задание

Для измерения силы света используют приборы, которые называются фотометрами. Изготовьте простейший аналог фотометра. Для этого возьмите белый лист (экран) и поставьте на нем жирное пятно (например, маслом). Закре­пите лист вертикально и осветите его с двух сторон разными источниками све­та (S1, S2) (см. рисунок). (Свет от источников должен падать перпендикулярно к поверхности листа.) Медленно передвигая один из источников, сделайте так, чтобы пятно стало практически невидимым. Это произойдет, когда освещен­ность пятна с одной и другой стороны будет одинаковой. Т. е. E1 = E2.

Задание

Поскольку Формула. Измерьте расстояние от первого источника до экрана (R1) и расстояние от второго источника до экрана (R2).

Сравните, во сколько раз сила света первого источника отличается от силы света второго источника: Формула.

  • Физика и техника в Украина

Научно-производственный комплекс «Фотоприбор»

Научно-производственный комплекс «Фотоприбор» (г. Черкассы) Сфера деятельности предприятия — разработка и производство приборов точной механики, оптоэлектроники и оптомеханики разно­образного назначения, медицинской и криминалистической техники, бытовых товаров, офисных часов представительного класса. HBK «Фо­топрибор» разрабатывает и выпускает перископические прицелы для разнообразных артиллерийских установок, гирокомпасы, гироскопы, оптико-электронную аппаратуру для вертолетов, бронетехники, а так­же широкий спектр оптического оборудование и приборов различного назначения.

Физика. 7 класс: Учебник / Ф. Я. Божинова, Н. М. Кирюхин, Е. А. Кирюхина. — X.: Издательство «Ранок», 2007. — 192 с.: ил.

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Влияние освещенности на организм

Информация, которую обрабатывает мозг, поступает к нему через глаза. Но итоговое влияние света на организм не ограничивается органами зрения, так через них излучаемый спектр в той или иной степени воздействует на все процессы, происходящие в организме человека. Поэтому важно выбирать безопасные и комфортные источники освещения для дома, мест отдыха и рабочих помещений.

Общее влияние света на работу организма человека

Усталость

Органы зрения

Включенные искусственные лампы оказывают прямое воздействие на сетчатку. Эти приборы вызывают у человека усталость, приводят к переутомлению и головным болям в том случае, если не сбалансировано соотношение яркостей или имеет место слепящее действие.

Общее состояние здоровья

От выбора освещения будет зависеть общее самочувствие и здоровье, сон, иммунитет, работа внутренних органов, нервной и дыхательной систем.

Трудоспособность

Интенсивность, температура и тип осветительных приборов в офисах и производственных помещениях оказывают влияние на человека, выполняющего профессиональные обязанности. От этих параметров зависит то, как быстро рабочие будут утомляться, насколько лучше концентрироваться и как часто делать ошибки.

Какой свет лучше – естественный или искусственный

Сравнительная оценка естественного и искусственного света, полученная в ходе исследований, показывает явное преимущество первого. Причина кроется в спектральном составе излучения и динамичности естественного света, которая влияет на циркадные ритмы. Но полагаться только на естественное освещение невозможно – человеку нужен свет на 4-8 часов дольше, чем длится световой день, плюс около 20 % рабочих в промышленно развитых регионах трудятся посменно, в том числе в ночные часы.

Цветовая температура

Оптимальный уровень яркости освещенности для человека в среднем составляет 1000-1500 лк. Если дневной свет не способен обеспечить эти показатели, необходимо дополнить его искусственным. Он может быть общим или локальным, рассчитанным на определенную зону работы или отдыха.

Вред от некачественного освещения

Первыми страдают от некорректно организованного освещения органы зрения человека. Прямое попадание лучей света на сетчатку не является желательным, но представляет опасность только при длительном (в течение нескольких часов) прямом воздействии и избытке доли синего цвета, который приводит к фотохимическим изменениям. Лучше выбирать лампы с рассеивателем – он снижает риск повреждения сетчатки.

Читайте так же:
Что означает световое поражение электрическим током ответ

Ожоги, полученные в результате случайного касания человека к источнику светового излучения – еще один повод расстаться с традиционными лампами накаливания. После 10 минут работы температура на поверхности колбы повышается до 110-120 °С, у люминесцентных ламп этот показатель в два раза ниже. В этом отношении безопасны светодиодные лампы. Они выделяют небольшое количество тепла, но уже не могут обжечь человека при случайном касании, так как почти вся тепловая энергия поглощается радиаторами, которые служат для отвода тепла от платы с LED-элементами.

Люминесцентные лампы небезопасны при нарушении их целостности – они выделяют пары ртути, которые имеют выраженное негативное воздействие: вызывают тошноту, головокружение, угнетают функцию почек, нервной и дыхательной систем. Разбить LED-лампы сложнее благодаря наличию в них рассеивателя из прочных материалов – матированного поликарбоната, прозрачного или полупрозрачного пластика. Такие приборы легко переносят падение с высоты 1-2 метров. Даже если светодиодная лампа разобьется, ее содержимое не будет представлять угрозы для здоровья человека.

Вред организму наносят мигания, характерные для всех ламп. Они незаметны органам зрения, но не ускользают от мозга. Мерцание вызывает усталость, головную боль, расстройство нервной системы. Негативное влияние объясняется изменение ритмической активности нервных элементов мозга, который вынужден перестраиваться под воздействие световых пульсаций. У лампы накаливания коэффициент пульсации достигает 15-18 %, а у светодиодных светильников, оснащенных драйверами, не превышает 4 %.

Разница света

Искусственный свет «холодных» оттенков – с длиной волны 440-500 нм и температурой более 3500 Кельвинов – угнетает у человека выработку мелатонина, что приводит к ухудшению сна и снижению иммунитета. Однако такое его влияние на организм в рабочих условиях оправдано с экономической точки зрения.

Как организовать правильное освещение

Чтобы организовать правильное освещение дома, в офисе или в производственных помещениях придерживаются нескольких принципов, которые частично нейтрализуют вред искусственного освещения для здоровья человека.

Освещение в офисе

Равномерное рассеивание

Видимые глазу человека перепады интенсивности света приводят к ухудшению адаптации и снижают видимость, что провоцирует потенциально опасные ситуации, вызванные ошибочной оценкой окружающей обстановки. Это важно для организации работы в ночные смены, когда на 20 % увеличивается количество несчастных случаев и на 10-20 % снижается базовая работоспособность.

Комфортная яркость

По санитарным нормам освещенность рабочих кабинетов и помещений учебных заведений составляет 300 лк, детской комнаты ребенка до 7 лет – 200 лк, гостиной и кухни – 150 лк, спальни – 100 лк, санузла, коридора и подсобных помещений – 50 лк.

Оптимальная мощность

На 1 м2 комнаты приходится от 10 до 20 Вт (от приглушенного до яркого) в эквиваленте мощности лампы накаливания. Для среднего по яркости света (14 Вт на 1 м2) в комнате площадью 12 м2 понадобятся осветительные элементы суммарной мощностью 15х12=168 Вт. В случае со светодиодными лампами это значение делят на 7 (усредненный коэффициент) и получают рекомендуемую мощность, равную 24 Вт.

Осветительные приборы с драйверами

Они способны уменьшить видимое мерцание лампы и то, которое воспринимается на уровне мозга человека. Драйвер – электротехническое устройство внутри LED-лампы, которое преобразовывает переменный ток в постоянный. Драйвер выпрямляет, сглаживает и стабилизирует напряжение, используемое для питания светодиодов.

Тепловая температура

Определяет комфортность и безопасность человека, находящегося в сфере действия искусственного света. Чем выше тепловая температура, выраженная в Кельвинах (К), тем белый будет визуально холоднее. Для дома это 2700-3000 К или «теплый белый свет», приятный для глаз. Для рабочего кабинета и производственных помещений рекомендуемое значение тепловой температуры составляет 3500-4000 К. В таких условиях человек чувствует себя бодрее, растет производительность его труда за счет снижения интенсивности выработки мелатонина.

Оптимальный выбор для дома, лечебных и учебных заведений, административных учреждений, офисов и производственных помещений – LED-лампы. Они безопасны (не содержат хрупких и токсичных компонентов), с энергопотреблением в 2 и 7 раз ниже, чем у люминесцентных и традиционных ламп накаливания соответственно, и увеличенным в 5-50 раз сроком службы. Выбирая LED-лампу, оцените прочность и точность изготовления пластикового корпуса, колбы и алюминиевой пластины, фиксацию цоколя, тип используемого драйвера.

Читайте так же:
Toshiba 40hl933rk уменьшить ток подсветки

Для того, чтобы узнать больше о преимуществах светодиодного освещения, рекомендуем Вам прочитать статью: «Светодиодное освещение от А до Я».

Сложности с выбором светильников?

Подготовим полный расчет стоимости, необходимого оборудования и 3D визуализацию для освещения вашего объекта. Это БЕСПЛАТНО — еще до покупки и заключения договора, вы сможете узнать: «Сколько и какие светильники подойдут?», «Сколько это будет стоить?», «Как это будет выглядеть?» и даже «Сколько будет наматывать счетчик?».

ВЛИЯНИЕ ОТКЛОНЕНИЯ НАПРЯЖЕНИЯ НА ЭЛЕКТРИЧЕСКИЕ ВЕЛИЧИНЫ ОСВЕТИТЕЛЬНЫХ ЛАМП

1 ORCID: 0000-0002-2875-2752, Кандидат технических наук, Таджикский технический университет имени академика М.С. Осими, 2 ORCID: 0000-0002-9470-3158, Соискатель, Таджикский технический университет имени академика М.С. Осими,

ВЛИЯНИЕ ОТКЛОНЕНИЯ НАПРЯЖЕНИЯ НА ЭЛЕКТРИЧЕСКИЕ ВЕЛИЧИНЫ ОСВЕТИТЕЛЬНЫХ ЛАМП

Аннотация

Приведены влияние отклонения напряжения от номинального значения 220 В на освещенность ламп накаливания и дуговые натриевые трубчатые лампы (ДНаТ). Установлено, что отклонения напряжения от номинального значения не влияет на освещенность энергосберегающих и светодиодных лампы. Показано, что большая часть энергосберегающих, светодиодных и ламп ДНаТ применяемые в коммунально-бытовых и уличных освещениях города Душанбе имеют низкий коэффициент активной мощности, приводящий в свою очередь к увеличению потребления реактивной мощности в электрической сети.

Ключевые слова: номинальное напряжение, электрические величины, осветительные лампы, освещенность, коэффициент активной мощности.

Tavarov S.Sh. 1 , Madjidov G.H. 2

1 ORCID: 0000-0002-2875-2752, PhD in Engineering, Tajik technical university of a name of the academician M. S. Osimi, 2 ORCID: 0000-0002-9470-3158, Postgraduate student, Tajik technical university of a name of the academician M. S. Osimi,

INFLUENCE OF THE DEVIATION OF TENSION ON ELECTRICAL QUANTITIES OF LIGHTING LAMPS

Abstract

Are given influence of a deviation of tension from nominal rate of 220 V on illumination of glow lamps and arc sodium tubular lamps (DNAT). It is established that tension deviation from nominal rate doesn’t influence illumination energy saving and light-emitting diode lamps. It is shown that the most part energy saving, light-emitting diode and lamps of DNAT applied in household and street consecrations of the city of Dushanbe have the low coefficient of active power leading in turn to increase in consumption of jet power in electric network.

Keywords: rated voltage, electrical quantities, lighting lamps, illumination, coefficient of active power.

По анализам причин нарушений в городских электрических сетях и состояния электрооборудования [1,2] более половины оборудование установленные в сетях 6-10/0,4 кВ имеют низкий показатель надежности электроснабжения. Известно, что отклонения напряжения влияет на показатели надежности электроснабжения городских распределительных сетях. Особенно в зимний период времени наблюдаются сильные отклонения напряжения от номинальных значениях в распределительных сетях 6-10/0,4 кВ г. Душанбе. Как известно отклонения напряжения иметь существенное влияние на освещенность ламп накаливания. Тогда как на энергосберегающие и светодиодные лампы, отклонения напряжения имеет незначительное влияние на освещенность [3]. Для энергосбережения электроэнергии потребители города Душанбе перешли на энергосберегающие и светодиодные лампы. Уличное освещение же города Душанбе переведены на осветительные лампы типа ДНаТ. По полученным данным с ОАО «Гор. Свет» общие количество ламп ДНаТ установленные для уличного освещения города Душанбе превышает количество 15 тыс. шт. Отклонения напряжения от номинального значения имеет существенное влияние на освещенность данных типов осветительных ламп.

Также необходимо отметить следующий фактор, что увеличения напряжения от номинального значения в итоги влияет на потребляемость электроэнергии, как и в распределительных, так и в общей электрической сети.

Для оценки влияние отклонения напряжения на электрические величины осветительных ламп на разработанном универсальном лабораторном стенде кафедры «Электроснабжения», ТТУ им. акад. М.С. Осими были проведены эксперименты. Универсальный лабораторный стенд позволяет исследовать светотехнические и электрические характеристики ламп накаливания, современных энергосберегающих компактных люминесцентных, светодиодных и ламп типов ДНаТ и ДРЛ в основном применяемые для уличного освещения.

При проведение экспериментов, напряжение изменялись в пределах (–14%, +5%) от номинального значения. Для учета электрических величин был использован универсальный измерительный прибор OMIX P94-MX, который позволяет, измеряет следующие параметры:

P – Активная мощность, Вт;

Q – Реактивная мощность, Вар;

S – Полная мощность, ВА;

Cos φ – коэффициент активной мощности;

Для измерения освещенности осветительных ламп быль применён люксметр типа DT-1309.

Технические характеристики DT-1309:

Рабочая температура –20…+50°C;

Диапазон измерений 0…100000 Лк;

Читайте так же:
Ремонт диммера выключателя света

Разрешение 1 Лк/0,1Гц;

Погрешность измерений 5%.

Для повышения и понижения напряжения быль использован лабораторный автотрансформатор (ЛАТР). Напряжение на зажимах осветительных ламп изменялись в приделах от +230 В до –190 В с шагом 10 В.

Результаты экспериментов по оценкам влияния отклонения напряжения на освещенность и электрических величин ламп накаливания, энергосберегающих, светодиодных и ДНаТ приведены (табл. 1,2).

Таблица 1 – Влияние отклонения напряжения на светодиодные и ламп накаливания

Таблица 2 –Влияние отклонения напряжения на энергосберегающие и ламп ДНаТ

По результатам экспериментов приведенных (см. табл. 1,2) были построены зависимости влияния изменения напряжения на изменения тока, активной, реактивной и полной мощности (рис. 1 а, б, в, г), а также на освещенность и коэффициента активной мощности осветительных ламп (рис. 1 д, е).

25-10-2016-16-24-58

25-10-2016-16-25-51

Рис. 1 – Влияние изменения напряжения на электрические и светотехнические величины осветительных ламп

Согласно (см. табл. 1,2) и (см. рис. 1 (е)) при понижения напряжения на (14%, 190 В) от номинального значения, освещенность ламп накаливания уменьшается на (-43%). Тогда как при повышения на (+5%, 230 В) освещенность ламп увеличивается на (+17%). Такая же картина наблюдается и у ламп типов ДНаТ, понижения напряжения на (–14%, 190 В) уменьшает освещенность ламп на (-35%), повышения напряжения на (+5%, 230 В) увеличивает освещенность ламп на (+16%).

Для энергосберегающих и светодиодных ламп повышения напряжения на (+5%) особо не влияет на освещенность. При понижения напряжения на (-14%) освещенность уменьшается на (-17%).

Как было отмечено выше для уличного освещения города Душанбе, все осветительные лампы переустановлены на лампы типов ДНаТ. Для энергосбережения коммунально-бытовых потребителей большая часть потребителей перешли к энергосберегающим и светодиодным лампам. Из полученных результатов экспериментов (см. табл. 2) видно, что отклонения напряжения не влияет на коэффициент активной мощности ламп ДНаТ (см. рис. 1 д). Но независимо от этого фактора у данных типов ламп низкий коэффициент активной мощности, что в результате влияет на увеличения потребления тока, активной, реактивной и полной мощность (см. рис. 1 а, б, в, г).

Тогда как на энергосберегающие и светодиодные лампы отклонения напряжения имеет существенное влияние не на освещенность, а на электрические величин.

Таким образом, по полученным результатам экспериментов (см. табл. 1,2) отклонения напряжения от номинальной значений на зажимах энергосберегающих и светодиодных ламп очень сильно влияет на коэффициент активной мощности (см. рис. 1 д). В результате чего приводит к увеличению потребления не только тока и активной мощности (см. рис. 2 б, в) но и реактивной мощности (см. рис. 2 в). Значение реактивной мощности за счет низкого коэффициента активной мощности, на несколько порядков больше чем активная мощность (см. табл. 1,2).

При понижения напряжения на зажимах светодиодной лампы (14%, 190 В) от номинального значения реактивная мощность превышает активную мощность в 3,2 раза. При повышения на (+5%, 230 В) реактивная мощность превышает активную на 3,6 раз (см. табл. 1).

Для энергосберегающих ламп при понижения напряжения на (14%, 190 В) от номинального значения реактивная мощность равна активной мощность, при повышения на (+5%, 230 В) реактивная мощность превышает активную мощность на 1,1 раз.

Необходимо отметить следующие, что из 32 –х подстанции напряжениям 35 кВ и выше находящихся в балансе городской электрической сети города Душанбе в большей части из них отсутствуют компенсирующие устройства [1,2].

В итоги можно сделать вывод, что данная проблема является актуальной для города Душанбе. Так как увеличения потребления реактивной мощности приводит к загрузке электрических сетях, дополнительному понижению напряжения и уменьшения надежности как городских распределительных сетей так и электрической сети в общем.

Список литературы / References

  1. Таваров С.Ш., Маджидов Г.Х Анализ причин нарушений в городских электрических сетях г. Душанбе // Электробезопасность. 2016. – №1. С. 25-30.
  2. Таваров С. Ш., Маджидов Г. Х., Фирдавс Э. А. Состояние электрического оборудования в городских электрических сетях г. Душанбе ОАХХ «Барки точик» // Электробезопасность. 2016. – №2. С. 4-12.
  3. Бегеман Т. Светоизлучающие диоды – Тенденции развития и влияние на освещение // Светотехника. 2001. – № 5. С. 5 – 10.

Список литературы на английском языке / References in English

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector