Sanitaryhygiene.ru

Санитары Гигиены
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Выбор сечения кабеля и провода: по нагреву, по току, по потере напряжения

Выбор сечения кабеля и провода: по нагреву, по току, по потере напряжения

Выбор сечения из условий допустимого нагрева сводится к пользованию соответствующими таблицами длительно допустимых токовых нагрузок Iд при которых токопроводящи е жилы нагреваются до предельно допустимой температуры, установленной практикой так, чтобы предупредить преждевременный износ изоляции, гарантировать надежный контакт в местах соединения проводников и устранить различные аварийные ситуации, что наблюдается при Iд ≥ Ip, Ip — расчетный ток нагрузки.

Периодические нагрузки повторно-кратковременного режима при выборе сечения кабеля пересчитывают на приведенный длительный ток

где Iпв — ток повторно-кратковременного режима приемника с продолжительностью включения ПВ.

Выбор сечения кабеля и провода

При выборе сечения проводов и кабелей следует иметь в виду, что при одинаковой температуре нагрева допустимая плотность тока токопроводящих жил большего сечения должна быть меньше, так как увеличение сечения их происходит в большей степени, чем растет охлаждающая поверхность ( смотрите рис. 1). По этой причине часто с целью экономии цветных металлов вместо одного кабеля большего сечения выбирают два или несколько кабелей меньшего сечения.

График зависимости допустимой плотности тока от сечения медных жил открыто проложенного трехжильного кабеля на напряжение 6 кВ с бумажной пропитанной изоляцией, нагретых током до температуры +65°С при температуре воздуха +25

Рис 1. График зависимости допустимой плотности тока от сечения медных жил открыто проложенного трехжильного кабеля на напряжение 6 кВ с бумажной пропитанной изоляцией, нагретых током до температуры +65°С при температуре воздуха +25 «С.

Выбор сечения кабеля и проводаПри окончательном выборе селения проводов и кабелей из условия допустимого нагрева по соответствующим таблицам необходимо учитывать не только расчетный ток линии, но и способ прокладки ее, материал проводников и температуру окружающей среды.

Кабельные линии на напряжение выше 1000 В, выбранные по условиям допустимого нагрева длительным током, проверяют еще на нагрев токами короткого замыкания. В случае превышения температуры медных и алюминиевых жил кабелей с бумажной пропитанной изоляцией напряжением до 10 кВ свыше 200 °С, а кабелей на напряжения 35 — 220 кВ свыше 125 °С сечение их соответственно увеличивают.

Сечение жил проводов и кабелей сетей внутреннего электроснабжения напряжением до 1000 В согласуют с коммутационными возможностями аппаратов защиты линий — плавких предохранителей и автоматических выключателей — так, чтобы оправдывалось неравенство I д / I з з, где k з — кратность допустимого длительного тока проводника по отношению к номинальному току или току срабатывания аппарата защиты I з (из ПУЭ). Несоблюдение приведенного неравенства вынуждает выбранное сечение жил соответственно увеличить.

Выбор сечения кабелей и проводов по потере напряжения

Сечение кабелей и проводов, выбранное из условий нагрева и согласованное о коммутационными возможностями аппаратов защиты, нужно проверять на относительную линейную потерю напряжения .

где U — напряжение источника электрической энергии, Uном — напряжение в месте присоединения приемника.

Допустимое отклонение напряжения на зажимах двигателей от номинального не должно превышать ±5 %, а в отдельных случаях оно может достигать +10 %.

В осветительных сетях снижение напряжения у наиболее удаленных ламп внутреннего рабочего освещения и прожекторных установок наружного освещения не должно превышать 2,5 % номинального напряжения ламп, у ламп наружного и аварийного освещения — 5 %, а в сетях напряжением 12. 42 В — 10 %. Большее снижение напряжения приводит к существенному уменьшению освещенности рабочих мест, вызывает снижение производительности труда и может привести к условиям, при которых зажигание газоразрядных ламп не гарантировано. Наибольшее напряжение на лампах, как правило, не должно превышать 105 % его номинального значения.

Повышение напряжения сетей внутреннего электроснабжения выше предусмотренного нормами не допустимо, так как оно приводит к существенному увеличению расхода электрической энергии, сокращению срока службы силового и осветительного электрооборудования, а иногда к снижению качества выпускаемой продукции.

Расчет потери напряжения в трехфазной трехпроходной линии при выборе сечения кабелей и проводов

Рис. 2. Расчет потери напряжения в трехфазной трехпроходной линии при выборе сечения кабелей и проводов: а — с одной нагрузкой на конце линии, б — с несколькими рапределенными нагрузками.

Проверку сечения проводников трехфазной трехпроводной линии с одной нагрузкой в конце ее (рис. 2, а), характеризуемой расчетным током I p и коэффициентом мощности cos фи на относительную линейную потерю напряжения, выполняют так:

где Uном — номинальное линейное напряжение сети, В, Ro и Хо — соответственно активное и индуктивное сопротивление одного километра линии, выбираемое из справочных таблиц, Ом / км, P р — расчетная активная мощность нагрузки, кВт, L — длина линии, км.

Для неразветвленной магистральной трехфазной трехпроводной линии постоянного сечения, несущей распределенные вдоль нее нагрузки с расчетными токами I p 1 , I р 2 , . I р и соответствующими коэффициентами мощности cos фи1, cos фи2, . cos фи, удаленными от источника питания на расстояния L1, L2, . Ln (рис. 2, б), относительная линейная потеря напряжения до наиболее удаленного приемника:

где P р i активная мощность — расчетная i -й нагрузки, удаленной от источника питания на расстояние L.

Читайте так же:
Яркий светодиод ток потребления

Если расчетная относительная потеря напряжения d U получится выше допустимой нормами, приходится выбранное сечение увеличить с тем, чтобы обеспечить нормируемое значение этой величины.

При небольших сечениях проводов и кабелей индуктивным сопротивлением Хо можно пренебречь, что существенно упрощает соответствующие вычисления. в трехфазных трехпроводных распределительных сетях наружного освещения отличающихся значительной протяженностью, следует обращать внимание на правильное включение равноудаленных светильников, ибо в противном случае потери напряжения распределяются по фазам неравномерно и могут достигнуть нескольких десятков процентов по отношению к номинальному напряжению.

Схемы включения равноудаленных светильников наружного освещения: а - правильная, б - неправильная

Выбор сечения кабеля по экономической плотности тока

Выбор сечения проводов и кабелей без учета экономических факторов может привести к значительным потерям электрической энергии в линиях и существенному возрастанию эксплуатационных расходов. По этой причине сечение проводников электрических сетей внутреннего электроснабжения значительной протяженности, а также сетей, работающих с большим числом часов использования максимума нагрузки — Tmax > 4000 ч — должно быть не менее отвечающего рекомендованной экономической плотности тока , устанавливающей оптимальное соотношение между капитальными затратами и эксплуатационными расходами, которое определяют так:

где I р — расчетный ток линии без учета повышения нагрузки при авариях и ремонтах, J э — экономическая плотность тока из расчета окупаемости капитальных затрат в течение 8 — 10 лет.

Выбор сечения кабеля и проводаРасчетное экономическое сечение округляют до ближайшего стандартного и, если оно окажется свыше 150 мм2, одну кабельную линию заменяют двумя или несколькими кабелями с суммарным сечением, соответствующим экономическому. Применять кабели с малоизменяющейся нагрузкой сечением менее 50 мм 2 не рекомендуется.

Сечение кабелей и проводов напряжением до 1000 В при числе часов использования максимума нагрузки Tmax

В трехфазных четырехпроходных сетях сечение нейтрального провода не рассчитывают, а принимают не менее 50% от сечения, выбранного для главных проводов, а в сетях, питающих газоразрядные лампы, вызывающие появление высших гармоник тока, такое же, как и главных проводов.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Медные обмоточные провода

Предназначены для изготовления обмоток трансформаторов, дросселей, электромагнитных реле, катушек колебательных контуров и т. п. Эти провода могут иметь покрытие (изоляцию) из эмали, волокнистых материалов или комбинированное покрытие из эмали и волокнистых материалов. Эмаль обладает лучшими электроизоляционными свойствами, чем волокнистые материалы, по этому эмалированные провода имеют меньшие диаметры, чем провода с изоляцией из волокнистых материалов.
Типы наиболее часто применяемых проводов приведены в таблице 1.
Основные параметры наиболее часто применяемых медных обмоточных проводов приведены в таблице 3.

Таблица 1. Типы наиболее часто применяемых проводов.

МаркаХарактеристики изоляцииМаксимально допустимая температура С*Диаметр медной жилы в мм
ПКР-1Провод со сплошной Капроновй изоляцией1050,72 — 2,44
ПКР-2Провод со сплошной Капроновй изоляцией утолщенной1050,72 — 2,44
ПЛБДПровод с обмоткой из шелка Лавсан и хлопчато-Бумажной пряжи в Два слоя1050,38 — 4,10
ПЛДПровод с обмоткой из шелка Лавсан в Два слоя1200,38 — 1,30
ПСДПровод с обмоткой из Стекловолокна в Два слоя с подклейкой и пропиткой нагревостойким лаком1550,31 — 4,80
ПСДКПровод с обмоткой из Стекловолокна в Два слоя с подклейкой и пропиткой Кремнийорганическим лаком1800,31 — 4,80
ПСДКТПровод с обмоткой из Стекловолокна в Два слоя с подклейкой и пропиткой Кремнийорганическим лаком, Теплостойкий3000,31 — 1,56
ПЭВПровод, изолированный Эмалевым Высокопрочным покрытием1050,02 — 0,05
ПЭВ-1Провод, изолированный Эмалевым Высокопрочным покрытием один слой1050,06 — 0,47
ПЭВ-2Провод, изолированный Эмалевым Высокопрочным покрытием два слоя1050,06 — 0,47
ПЭВДПровод, изолированный одним слоем высокопрочной эмали с дополнительным термопластичным покрытием1050,2 — 0,5
ПЭВКЛПровод, изолированный Эмалевым Высокопрочным покрытием на основе Капронового Лака1050,1 — 0,15
ПЭВЛОПровод, изолированный Эмалевым Высокопрочным покрытием и Однослойной обмоткой из шелка Лавсан1050,06 — 1,3
ПЭТВЛ-1Провод, изолированный Эмалевым Высокопрочным Теплоснойким покрытием в один слой на основе полиуретанового Лака (провод облуживается без предварительной зачистки эмали и без применения травильных составов)1200,06 — 1,56
ПЭТВЛ-2Провод, изолированный Эмалевым Высокопрочным Теплоснойким покрытием в два слоя на основе полиуретанового Лака (провод облуживается без предварительной зачистки эмали и без применения травильных составов)1200,06 — 1,56
ПЭЛПровод с Эмалевым Лакостойким покрытием900,03 — 2,44
ПЭЛКОПровод с Эмалевым Лакостойким покрытием и Однослойной обмоткой из капронового волокна1050,2 — 2,10
ПЭЛОПровод с Эмалевым Лакостойким покрытием и Однослойной обмоткой из шелка Лавсан1050,05 — 2,10
ПЭЛР-1Провод с покрытием в один слой высокопрочной полиамидной эмали1200,1 — 2,44
ПЭЛР-2То же в два слоя1200,1 — 2,44
ПЭЛУПровод с лакостойкой эмалью, утолщенный слой1050,05 — 2,44
ПЭЛШКОПровод с лакостойкой эмалью и обмоткой из капронового волокна1050,1 — 1,56
ПЭЛШОПровод с Эмалевым Лакостойким покрытием и Однослойной Шелковой обмоткой900,05 — 1,56
ПЭМ-1Провод с Эмалевым высокопрочным покрытием лаком Металвин один слой1050,06 — 2,44
ПЭМ-2Провод с Эмалевым высокопрочным покрытием два слоя лаком Металвин1050,06 — 2,44
ПЭМ-3Провод с Эмалевым высокопрочным покрытием три слоя лаком Металвин1050,06 — 2,44
ПЭПЛОПровод с Эмалевым высокопрочным и нагревостойким покрытием и Однослойной обмоткой из шелка Лавсан (провод облуживается без предварительной зачистки эмали и без применения травильных составов)1200,06 — 1,30
ПЭТВПровод с Эмалевым Теплостойким Высокопрочным покрытием1300,06 — 2,44
ПЭТВ-РПровод с Эмалевым Теплостойким Высокопрочным покрытием для обмоток Реле2000,02 — 0,20
ПЭТКТеплостойкая эмаль0,05 — 0,51
ПЭТЛОПровод с Эмалевым Теплостойким покрытием и Однослойной обмоткой из шелка Лавсан1050,06 — 1,30
ПЭТ-155Провод Эмалированный Теплостойкий полиэфиримидным лаком1550,06 — 2,44
Читайте так же:
Схема выключателя света с фотоэлементом

Высокочастотные обмоточные провода

Высокочастотные обмоточные провода (литцендраты), предназначены для изготовления высокочастотных катушек индуктивности с высокой добротностью. Эти провода представляют собой пучок эмалированных проводов, диаметром 0,05. 0,2 мм, перевитых особым способом, благодаря чему в пучке ослабляется поверхностный эффект и, следовательно, уменьшается сопротивление провода токам высокой частоты.
Существуют высокочастотные обмоточные провода следующих марок: ЛЭЛ и ЛЭП — без дополнительной изоляции пучка; ЛЭЛО — с обмоткой из шелка с лавсаном в один слой; ЛЭПКО — с обмоткой из капронового волокна в один слой; ЛЭШО — с обмоткой из натурального шелка в один слой; ЛЭЛД — с обмоткой из шелка с лавсаном в два слоя; ЛЭШД — с обмоткой из натурального шелка в два слоя.
Провода марок ЛЭП и ЛЭПКО, перед лужением не требуют зачистки и применения каких-либо травильных составов.
Основные параметры некоторых высокочастотных обмоточных проводов приведены в таблице 2.

Таблица 2. Типы наиболее часто применяемых высокочастотных проводов.

Расчет сечения кабеля: зачем он необходим и как правильно выполнить

Самое уязвимое место в сфере обеспечения квартиры или дома электрической энергией – это электропроводка. Во многих домах продолжают использовать старую проводку, не рассчитанную на современные электроприборы. Нередко подрядчики и вовсе стремятся сэкономить на материалах и укладывают провода, не соответствующие проекту. В любом из этих случаев необходимо сначала сделать расчет сечения кабеля, иначе можно столкнуться с серьезными и даже трагичными последствиями.

кабель

Для чего необходим расчет кабеля

В вопросе выбора сечения проводов нельзя следовать принципу «на глаз». Протекая по проводам, ток нагревает их. Чем выше сила тока, тем сильнее происходит нагрев. Эту взаимосвязь легко доказать парой формул. Первая из них определяет активную силу тока:

формула

где I – сила тока, U – напряжение, R – сопротивление.

Из формулы видно: чем больше сопротивление, тем больше будет выделяться тепла, т. е. тем сильнее проводник будет нагреваться. Сопротивление определяют по формуле:

где ρ – удельное сопротивление, L – длина проводника, S – площадь его поперечного сечения.

Чем меньше площадь поперечного сечения проводника, тем выше его сопротивление, а значит выше и активная мощность, которая говорит о более сильном нагреве. Исходя из этого, расчет сечения необходим для обеспечения безопасности и надежности проводки, а также грамотного распределения финансов.

Что будет, если неправильно рассчитать сечение

Без расчета сечения проводника можно столкнуться с одной из двух ситуаций:

  • Слишком сильный перегрев проводки. Возникает при недостаточном диаметре проводника. Создает благоприятные условия для самовозгорания и коротких замыканий.
  • Неоправданные затраты на проводку. Такое происходит в ситуациях, когда были выбраны проводники избыточного диаметра. Конечно, опасности здесь нет, но кабель большего сечения стоит дороже и не столь удобен в работе.

проводка

Что еще влияет на нагрев проводов

Из формулы (2) видно, что сопротивление проводника зависит не только от площади поперечного сечения. В связи с этим на его нагрев будут влиять:

  • Материал. Пример – у алюминия удельное сопротивление больше, чем у меди, поэтому при одинаковом сечении проводов медь будет нагреваться меньше.
  • Длина. Слишком длинный проводник приводит к большим потерям напряжения, что вызывает дополнительный нагрев. При превышении потерь уровня 5% приходится увеличивать сечение.

Пример расчета сечения кабеля на примере BBГнг 3×1,5 и ABБбШв 4×16

Трехжильный кабель BBГнг 3×1,5 изготавливается из меди и предназначен для передачи и распределения электричества в жилых домах или обычных квартирах. Токопроводящие жилы в нем изолированы ПВХ (В), из него же состоит оболочка. Еще BBГнг 3×1,5 не распространяет горение нг(А), поэтому полностью безопасен при эксплуатации.

Читайте так же:
Область применения кабелей проводов шнуров кабелей

BBГнг 3x1,5

Кабель ABБбШв 4×16 четырехжильный, включает токопроводящие жилы из алюминия. Предназначен для прокладки в земле. Защита с помощью оцинкованных стальных лент обеспечивает кабелю срок службы до 30 лет. В компании «Бонком» вы можете приобрести кабельные изделия оптом и в розницу по приемлемой цене. На большом складе всегда есть в наличии вся продукция, что позволяет комплектовать заказы любого ассортимента.

Порядок расчета сечения по мощности

В общем виде расчет сечения кабеля по мощности происходит в 2 этапа. Для этого потребуются следующие данные:

  • Суммарная мощность всех приборов.
  • Тип напряжения сети: 220 В – однофазная, 380 В – трехфазная.
  • ПУЭ 7. Правила устройства электроустановок. Издание 7.
  • Материал проводника: медь или алюминий.
  • Тип проводки: открытая или закрытая.

Шаг 1. Потребляемую мощность электроприборов можно найти в их инструкции или же взять средние характеристики. Формула для расчета общей мощности:

где P1, P2 и т. д. – мощность подключаемых приборов, Кс – коэффициент спроса, который учитывает вероятность включения всех приборов одновременно, Кз – коэффициент запаса на случай добавления новых приборов в доме. Кс определяется так:

  • для двух одновременно включенных приборов – 1;
  • для 3-4 – 0,8;
  • для 5-6 – 0,75;
  • для большего количества – 0,7.

Кз в расчете кабеля по нагрузке имеет смысл принять как 1,15-1,2. Для примера можно взять общую мощность в 5 кВт.

Шаг 2. На втором этапе остается по суммарной мощности определить сечение проводника. Для этого используется таблица расчета сечения кабеля из ПУЭ. В ней дана информация и для медных, и для алюминиевых проводников. При мощности 5 кВт и закрытой однофазной электросети подойдет медный кабель сечением 4 мм 2 .

таблица

Правила расчета по длине

Расчет сечения кабеля по длине предполагает, что владелец заранее определил, какое количество метров проводника потребуется для электропроводки. Таким методом пользуются, как правило, в бытовых условиях. Для расчета потребуются такие данные:

  • L – длина проводника, м. Для примера взято значение 40 м.
  • ρ – удельное сопротивление материала (медь или алюминий), Ом/мм 2 ·м: 0,0175 для меди и 0,0281 для алюминия.
  • I – номинальная сила тока, А.

Шаг 1. Определить номинальную силу тока по формуле:

где P – мощность в ваттах (суммарная всех приборов в доме, для примера взято значение 8 кВт), U – 220 В, Кс – коэффициент одновременного включения (0,75), cos φ – 1 для бытовых приборов. В примере получилось значение 36 А.

Шаг 2. Определить сечение проводника. Для этого нужно воспользоваться формулой (2):

Потеря напряжения по длине проводника должна быть не более 5%:

Потери напряжения dU = I · R, отсюда R = dU/I = 11/36 = 0,31 Ом. Тогда сечение проводника должно быть не меньше:

В случае с трехжильным кабелем площадь поперечного сечения одной жилы должна составить 0,75 мм 2 . Отсюда диаметр одной жилы должен быть не менее (S/ π) · 2 = 0,98 мм. Кабель BBГнг 3×1,5 удовлетворяет этому условию.

Как рассчитать сечение по току

Расчет сечения кабеля по току осуществляется также на основании ПУЭ, в частности, с использованием таблиц 1.3.6. и 1.3.7. Зная суммарную мощность электроприборов, можно по формуле определить номинальную силу тока:

Для трехфазной сети используется другая формула:

где U будет равно уже 380 В.

Если к трехфазному кабелю подключают и однофазных, и трехфазных потребителей, то расчет ведется по наиболее нагруженной жиле. Для примера с общей мощностью приборов, равной 5 кВт, и однофазной закрытой сети получается:

BBГнг 3×1,5 – медный трехжильный кабель. По таблице 1.3.6. для силы тока 18 А ближайшее в значение – 19 А (при прокладке в воздухе). При номинальной силе тока 19 А сечение его токопроводящей жилы должно составлять не менее 1,5 мм 2 . У кабеля BBГнг 3×1,5 одна жила имеет сечение S = π · r 2 = 3,14 · (1,5/2) 2 = 1,8 мм 2 , что полностью соответствует указанному требованию.

таблица

Если рассматривать кабель ABБбШв 4×16, необходимо брать данные из таблицы 1.3.7. ПУЭ, где указаны значения для алюминиевых проводов. Согласно ей, для четырехжильных кабелей значение тока должно определяться с коэффициентом 0,92. В рассматриваемом примере к 18 А ближайшее значение по таблице 1.3.7. составляет 19 А.

С учетом коэффициента 0,92 оно составит 17,48 А, что меньше 18 А. Поэтому необходимо брать следующее значение – 27 А. В таком случае сечение токопроводящей жилы кабеля должно составлять 4 мм 2 . У кабеля ABБбШв 4×16 сечение одной жилы равно:

Согласно таблице 1.3.7. этот кабель рациональнее использовать при номинальном токе 60 А (при прокладке по воздуху) и до 90 А (при прокладке в земле).

Читайте так же:
Этюд выключатель двухклавишный скрытый с подсветкой

3. Плотность тока в обмотках из транспонированного провода выбирается так же, как и для медного или алюминиевого провода.

2. Плотность тока в обмотках из алюминиевой ленты выбирается, как для алюминиевого провода.

По этой же причине среднюю плотность тока в обмотках этих трансформаторов рекомендуется принимать 0,93—0,97 значения, найденного по (5.4) или (5.5). После определения средней плотности тока Jср и сечения витка П для каждой из обмоток можно произвести выбор типа конструкции обмотки, пользуясь указаниями, сделанными в предыдущих параграфах и сведенными вкратце в табл. 5.8. При выборе конструкции обмоток ВН следует учитывать также и возможность получения наиболее удобной схемы регулирования напряжения обмотки ВН в соответствии с указаниями, данными в § 6.2.

Таблица 5.8. Основные свойства и нормальные пределы применения различных типов обмоток масляных трансформаторов

Тип обмотки

Применение на стороне

Основные достоинства

Основные недостатки

Материал обмоток

Пределы применения, включительно

Число параллель-ных проводов

Схема регулиро-вания напряже-ния

по мощности трансформа-тора S, кВ·А

по току на стержень I, А

по напряжению U, В

по сечению витка П, мм 2

Цилиндрическая одно- и двухслойная из прямоугольного провода

Простая технология изготовления, хорошее охлаждение

Малая механическая прочность

От 10-13 до 600-650

Цилиндрическая многослойная из прямоугольного провода

Хорошее заполнение окна магнитной системы, простая технология

Уменьшение охлаждаемой поверхности по сравнению с обмотками, имеющими радиальные каналы

От 630 до 80000

От 15-18 до 1000-1200

От 10-13 до 1000-1200

Цилиндрическая многослойная из алюминиевой ленты

Простая технология изготовления, хорошее охлаждение, Хорошее заполнение окна магнитной системы

Малая механическая прочность в радиальном направлении

Цилиндрическая многослойная из круглого провода

Простая технология изготовления

Ухудшение теплоотдачи и уменьшение механической прочности с ростом мощности

От 0,3-0,5 до 80-100

От 1,094 до 42,44

От 2-3 до 125-135

Винтовая одно-, двух- и многоходовая из прямоугольного провода

Высокая механическая прочность, надежная изоляция, хорошее охлаждение

Более высокая стоимость по сравнению с цилиндричес-кой обмоткой

От 75-100 и выше

От 150-200 и выше

От 75-100 и выше

Непрерывная катушечная из прямоугольного провода

Высокая электрическая и механическая прочность, хорошее охлаждение

Необходимость перекладки половины катушек при намотке

В тех случаях, когда возможно применить два различных типа обмотки, если нет других указаний, следует, как правило, отдавать предпочтение типу, более простому и дешевому в производстве. Если к трансформатору предъявляются какие-либо специальные требования, например повышенной механической или электрической прочности или другие, следует выбирать тип обмотки, наиболее отвечающий этим требованиям.

В сухих трансформаторах могут быть применены те же основные типы обмоток, которые применяются в масляных трансформаторах при условии уменьшения плотности тока согласно табл. 5.7 и увеличения размеров охлаждающих каналов согласно табл. 9.2. При выборе типа обмоток для сухого трансформатора можно пользоваться табл. 5.8 с сохранением всех пределов применения обмоток, кроме предела применения по току на один стержень и напряжению. Цифры таблицы для тока должны быть снижены на 30—35 %, а номинальное напряжение обмоток не должно быть более 15 кВ.

При расчете обмоток существенное значение имеет правильный выбор размеров провода. В обмотках из провода круглого сечения обычно выбирается провод, ближайший по площади поперечного сечения к сечению П, определяемому по выбранной плотности тока Jср, или в редких случаях подбираются два провода с соответствующим общим суммарным сечением.

При расчете винтовых, катушечных и в большинстве случаев двух- и многослойных цилиндрических обмоток из провода прямоугольного сечения желательно применять наиболее крупные сечения провода, что упрощает намотку обмотки на станке и позволяет получить наиболее компактное ее размещение на магнитной системе. Однако применение наиболее крупных размеров провода ограничивается условиями охлаждения обмотки и допустимыми добавочными потерями от вихревых токов, вызываемых полем рассеяния.

Выбор размеров поперечного сечения провода связан с плотностью теплового потока на охлаждаемой поверхности обмотки q. Значение q в целях недопущения чрезмерного нагрева обмоток в трансформаторах с естественным масляным охлаждением ограничивается q≤ 1200-1400 Вт/м 2 и во всяком случае не более 1500 Вт/м 2 . В трансформаторах с искусственной циркуляцией масла допускают q≤2000-2200 Вт/м 2 . Превышение указанных значений q приводит к существенному увеличению массы системы охлаждения трансформатора. Высокие значения q определяют также значительный нагрев масла в каналах обмоток, что ускоряет старение масла. Снижение допустимых значений q для медных обмоток примерно до 1000 Вт/м 2 позволит существенно замедлить старение масла и удлинить сроки его замены. Для алюминиевых обмоток значения q обычно естественно получаются на 20—25 % ниже, чем для медных.

В обмотках сухих трансформаторов могут быть допущены различные значения q в зависимости от класса нагревостойкости изоляции и размеров охлаждающих каналов. Выбор размеров вертикальных и горизонтальных каналов и соответствующих значений q, обеспечивающих получение допустимых превышений температуры, может быть сделан по табл. 9.26 и 9.2в.

Читайте так же:
Supra stv lc32552wl уменьшить ток подсветки

При изоляции класса нагревостойкости А для внутренних обмоток при вертикальных каналах шириной 1 и горизонтальных 0,8 см можно допустить q≤280 Вт/м 2 . Для наружных обмоток, имеющих только одну внешнюю поверхность (обмотка, намотанная на цилиндре без канала), можно допустить q≤600 Вт/м 2 .

В обмотках масляного трансформатора из прямоугольного провода, каждый провод которых с двух сторон омывается маслом (в одно- и двухслойных цилиндрических с намоткой на ребро, в винтовых и непрерывных катушечных с намоткой плашмя) значение большого из двух размеров поперечного сечения провода b, м (см. рис. 7.3, в) может быть выбрано по формулам:

для медного провода

b ≤ qkз/(1,07J 2 ·10 -8 ); (5.6)

для алюминиевого провода

b ≤ qkз/(1,72J 2 ·10 -8 ). (5.7)

Для винтовых и катушечных обмоток следует принять kз=1; Для цилиндрических kз = 0,8. Найденный размер провода следует рассматривать как предельно допустимый для заданного значения q. При выборе провода по сортаменту он может быть принят и меньшим. Выбор предельного значения b можно сделать также и по графикам рис. 5.34.

Если размер b получается близким к предельному размеру по сортаменту табл. 5.2 или выходит за эти пределы, то в катушечной обмотке можно выбрать действительный размер провода, равный половине или меньше половины найденного по формуле или графикам рис. 5.34, сдвоить катушки и сделать радиальные масляные каналы через две катушки.

Рис. 5.34. Графики для ориентировочного определения размера провода b по заданным значениям q и J в катушечных, винтовых и цилиндрических обмотках из прямоугольного провода:

a—медный провод; б — алюминиевый провод. Для цилиндрических обмоток размер b, полученный по графику, умножить на 0,8

В одноходовой винтовой обмотке в этом случае можно сделать радиальные масляные каналы не через один виток, а через два; в двухходовой винтовой обмотке можно отказаться от радиальных каналов между ходами. В алюминиевых обмотках трансформаторов мощностью до 6300 кВ·А возможность сдвоить витки в винтовой обмотке или катушки в непрерывной катушечной обмотке представляется достаточно часто.

Для обмоток сухих трансформаторов предельный размер b может быть найден также по (5.6) и (5.7) с учетом допустимого значения q и размеров осевых каналов по табл. 9.2б и 9.2в.

В многослойных цилиндрических обмотках из прямоугольного провода, наматываемого плашмя, маслом омываются поверхности, прилегающие к масляным охлаждающим каналам, и внешняя поверхность наружной обмотки стержня. В этом случае на охлаждаемые поверхности выходит тепло, возникающее в нескольких слоях проводов, находящихся между двумя каналами, и под искомым значением b, определяемым по (5.6) и (5.7) при kз = 0,8, следует понимать сумму размеров металла проводов в радиальном направлении обмотки между двумя осевыми каналами. Если данная часть (катушка) обмотки намотана непосредственно на изоляционном цилиндре без масляного канала и имеет только одну цилиндрическую поверхность, омываемую маслом, значения b, полученные из (5.6) или (5.7) или по графикам рис. 5.34, следует умножить на 0,5.

Если, например, в многослойной обмотке из прямоугольного алюминиевого провода при J = 1,6·10 6 А/м 2 , при допустимом значении q=1400 Вт/м 2 по (5.7)

b ==0,0254 м (25,4 мм)

то это значит, что в катушке между двумя осевыми каналами можно уложить из сортамента табл. 5.2 пять слоев провода с размером в радиальном направлении по 5 мм или шесть слоев с размером по 4,25 мм и т. д. при значении q≈1400 Вт/м 2 . Так же можно определить предельный радиальный размер провода в винтовой обмотке, не имеющей радиальных каналов.

В сухих трансформаторах с естественным воздушным охлаждением многослойные цилиндрические обмотки из прямоугольного провода применяются редко. При необходимости в этом случае можно также воспользоваться формулами (5.6) и (5.7) при kз = 0,8 или графиками рис. 5.34.

В многослойной цилиндрической обмотке из прямоугольного провода возникают добавочные потери, вызываемые вихревыми токами. При осевом направлении потока магнитного поля рассеяния обмоток эти потери пропорциональны четвертой степени радиального размера провода обмотки и квадрату числа слоев обмотки в радиальном направлении. В обмотках этого типа обычно стараются выбрать число слоев обмотки и радиальный размер провода так, чтобы добавочные потери не превысили 5 % основных потерь обмотки. Иногда, сравнительно редко, допускают добавочные потери до 10 %.

Для ориентировочного выбора максимально допустимого значения радиального размера прямоугольного провода

Таблица 5.9. Ориентировочные предельные радиальные размеры провода а, мм, цилиндрических обмоток из провода прямоугольного сечения при добавочных потерях не превышающих 5, 10, 15 и 20 %

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector