Sanitaryhygiene.ru

Санитары Гигиены
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Плазморезы, можно ли их использовать для сварки

Плазморезы , можно ли их использовать для сварки?

Вот смотрю передачи по дискавери,
часто встречается плазморезное оборудование.
Их используют обычно для резки металла.

У меня вопрос — можно ли их использовать для сварки ?
Ведь принцип работы плазмореза заключается
в использовании струи горячей плазмы вырывающейся из сопла .
Такой же принцип используется при газосварке ,
когда плавят проволоку и каплями металла сваривают детали.
Можно ли также использовать плазморез ?

Преимущества очевидны — не требуются баллоны с газом,
а соответственно меньше проблем с проверяющими инспекциями.
Насчет стоимости плазмореза не в курсе.

Сообщение отредактировал наверновосне — Jul 23 2009, 14:53

Сообщений: 18 604

Переносные однофазные инверторы для воздушно-плазменной резки с контактным дуговым зажиганием. Применимы для быстрой резки без деформации всех проводящих материалов, таких как сталь, нержавеющая сталь, гальваническая сталь, алюминий, медь, латунь и т.д. Поставляются в комплекте с плазмотроном. Особенности: уменьшенный вес и габариты индикация наличия напряжения зажигания автоматическое охлаждение плазмотрона индикация давления воздуха термостат, защита от перегрузок, повышенного и пониженного напряжения оборудован компрессором и поэтому не требует подключения к дополнительному источнику подачи сжатого воздуха Мощность Max 2.8 кВт Напряжение 220 B Частота напряжения 50 Гц Число фаз 1 Ток реза Min-Max 5-25 A 25 % 20 A Параметры реза 6 мм Габариты ДхШхВ 475x170x340 мм Масса 12.5 кг

Сообщений: 12 892

Сообщений: 1 913

сам видел ,как газом варят,ацетиленом+кислород :
обычной проволокой от сетки-рабицы и горелкой и больше ничего,
кстати, получается очень аккуратно.

Сообщение отредактировал наверновосне — Jul 23 2009, 16:31

Сообщений: 7 438
Из: Чебоксары

Вообще говоря нельзя. Но если очень хочется то можно

Даже представитель есть:
Чебоксары,
ИП Васильев Н.И.
428034, г. Чебоксары, ул. Т. Кривова, 8/1
Тел./Факс (8352) 40-32-43, 45-56-06
Тел. (903) 346-86-29
Контактное лицо:
Васильев Николай Иванович

Но поговаривают что универсал всегда хуже чем несколько узких специалистов. Как в металлобработке, так и вообще "по жизни".

Сообщение отредактировал Advik — Jul 23 2009, 18:11

Сообщений: 23 545
Из: раненный душою

хороший плазморез нельзя. плазменный факел сдует все. именно потому он и называется плазмоРЕЗОМ, а не, скажем, плазменной установкой
для плазменной сварки существует другое оборудование, но, т.к. большие вещи плазмой не варят, то и сварка называется микроплазменной. по сути отличается от аргонодуговой сварки лишь наличием двухгазового плазмотрона, в котором в плазмообразующую камеру через завихритель поступает аргон (или иной инертный газ) с небольшим расходом. второй газ (тот же аргон, но с большим в разы расходом) — защитный и нужен для создания инертной "завесы" вокруг зоны сварки. электрод вольфрамовый. возбуждение дуги только бесконтактное, причем изначально возбуждается косвенная дуга, впоследствии переходящая в прямую (как и у большинства современных плазморезов)
единственное преимущество перед обычной аргонодуговой сваркой — за счет обжима дугового факела, он получает игольчатую форму, что увеличивает глубину проплавления металла без дополнительной разделки. в совокупности с небольшим тепловложением это существенно уменьшает зону отжига.

немножко не так, я полагаю. при газосварке необходимо прогреть свариваемые детали, а присадочный материал (проволока, пруток или просто кусочки металла) подаются в зону сварки и в идеале должны плавиться в сварочной ванне. т.к. я не занимался газовой сваркой, могу ошибаться. сварщики пусть поправят
но именно так варят аргонодуговой сваркой и сваркой от газогенераторов. причем нержавейку и некоторые другие материалы можно сваривать вообще без присадки — самоопрессовкой.
если же просто капать каплями присадочного металла на детали, пусть и разогретые, то сварки не будет. обязательно должна быть ванна — место с расплавом — в зоне сварки

Переносные однофазные инверторы для воздушно-плазменной резки с контактным дуговым зажиганием. Применимы для быстрой резки без деформации всех проводящих материалов, таких как сталь, нержавеющая сталь, гальваническая сталь, алюминий, медь, латунь и т.д. Поставляются в комплекте с плазмотроном. Особенности: уменьшенный вес и габариты индикация наличия напряжения зажигания автоматическое охлаждение плазмотрона индикация давления воздуха термостат, защита от перегрузок, повышенного и пониженного напряжения оборудован компрессором и поэтому не требует подключения к дополнительному источнику подачи сжатого воздуха Мощность Max 2.8 кВт Напряжение 220 B Частота напряжения 50 Гц Число фаз 1 Ток реза Min-Max 5-25 A 25 % 20 A Параметры реза 6 мм Габариты ДхШхВ 475x170x340 мм Масса 12.5 кг

Читайте так же:
Розетка с юсб переходом

судя по параметрам, максимальная толщина черного металла при "чистовом" резе не больше 4мм. возможно, меньше. 6мм — явно черновой рез, при котором увеличивается ширина реза, количество грата и уменьшается скорость резки. в остальном довольно любопытная штука. для кузовных работ и ажурной резки по тонкому металлу.

никак. самый первый вид дуговой сварки, если я не путаю (что вполне возможно, кстати) — сварка графитовым стержнем. никакой дополнительной защиты не предусматривалось. кстати, иногда варю таким макаром термопары. вполне сносно выходит

газосварка — один из самых некачественных видов сварки. грязная, взрывоопасная, зона сварки не защищается. не берем
разве только газогенераторный аппарат типа "Лига" для домашних целей. вот только не знаю, выпускают ли их до сих пор. устройство простое: набор металлических пластин как в электрическом конденсаторе переменной емкости в старых приемниках, только побольше, находится в резервуаре, заполненном раствором не то соды, не то еще какой-то химии. к пластинам прикладывается напряжение, соответственно через воду, щедро сдобренную щелочью, бодренько протекает ток. на пластинах выделяются газообразные кислород и водород. т.к. пластин много, поток довольно приличный и возникает некоторое избыточное давление. через отвертсие в верхней части резервуара газовая смесь попадает в пузырьковый взрывобезопасный клапан, а потом — в шланг горелки. тот же автоген, но те аппараты, которые я пробовал, были оснащены малюсенькими горелками, которые держишь как карандаш — чуть ли не ювелирная штука

Вообще говоря нельзя. Но если очень хочется то можно

http://www.multiplaz.ru/
.
Но поговаривают что универсал всегда хуже чем несколько узких специалистов. Как в металлобработке, так и вообще "по жизни".

1) не стОит тех денег, которые за него просят;
2) разоришься на расходниках

в остальном — довольно милая игрушка. можно резать почти все, включая керамическую плитку и стекло. однако, игрушка — она и в африке игрушка. да и заливать для сварки в ее нутро водку у меня рука не поднимается

Решение проблем при плазменной резке

Качество плазменной резки зависит от множества факторов: от типа и расположения горелки, от состояния и качества расходных материалов, от напряжения дуги или высоты резака, от типа, чистоты, давления и расхода газа, от толщины и состава используемого материала, от размера отверстия сопла, от тока резки, скорости хода машины, и т.д.

Большинство этих параметров связаны друг с другом, и изменение хотя бы одного из них может повлиять на остальные. Ниже приведены стандартные решения наиболее часто встречающихся проблем:

  • Угол резки
  • Плоскостность резки
  • Шероховатость поверхности
  • Окалина
  1. Меняйте расход и давление газа с небольшим шагом
  2. По мере необходимости, повышайте или понижайте напряжение дуги с шагом в 1В
  3. Корректируйте скорость резки с шагом 5% или до тех пор, пока не удастся добиться улучшения.

Угол резки

Отрицательный угол резки
Если верхняя часть детали больше ее нижней части, это означает, что угол резки отрицательный. Это может быть вызвано следующими причинами:

  • Неправильное расположение горелки
  • Изгибание или скручивание материала
  • Износ или повреждение расходных деталей
  • Низкое напряжение дуги
  • Слишком низкая скорость резки
  • Неправильное расположение горелки
  • Изгибание или скручивание материала
  • Износ или повреждение расходных деталей
  • Высокое напряжение дуги
  • Слишком высокая скорость резки
  • Неправильная сила ток
Читайте так же:
Розетка электрическая 380в 32а

Плоскостность резки

Скругление снизу и сверху

Такой эффект возникает при резке металла толщиной менее 6 мм. Обычно это происходит из-за избытка энергии или из-за использования слишком большого тока для данной толщины.

Подрез верхнего края

Если стороны поверхности резки загнуты внутрь, то возникает подрез верхнего края. Это происходит в том случае, когда при резке горелка расположена слишком близко к металлу и, если напряжение дуги слишком низкое для данной толщины материала.

Состояние поверхности

Шероховатость, вызванная резкой Если на поверхности материала присутствуют однородные шероховатости (чаще всего, по одной оси), скорее всего, они возникли во время процесса резки. Причины:

  • Износ или повреждение расходных материалов
  • Слишком высокий расход газа
  • Загрязнение деталей машины: направляющих, колес, рейки или шестерни
  • Смещение направляющих рельс
  • Износ, повреждение или ослабление крепления колес, либо подшипников.

Окалина

На образование окалины при резке влияет множество факторов. Современные системы плазменной резки поддерживают различные режимы работы без образования окалины, поэтому, если возникла проблема образования окалины, значит возникла какая-то проблема.

Существует несколько видов окалины:

1. Высокоскоростная окалина

Если окалина небольшого размера, но при этом она приварена или закатана на верхней части обрабатываемой детали, часто это происходит из-за слишком высокой скорости резки. Окалину такого типа достаточно сложно удалить, и даже может потребоваться шлифовка материала. Обычно окалина сопровождается S-образными бороздками, которые так же, в свою очередь, говорят о высокой скорости резки. Помимо этого, необходимо проверить, не велико ли напряжение дуги.

2. Низкоскоростная окалина

Низкоскоростная окалина представляет собой крупные шаровидные частицы на нижней кромке, обычно легко удаляемые. При образовании низкоскоростной окалины, попробуйте повысить напряжение дуги или ускорить резку, чтобы увеличить высоту расположения резака.

3. Верхняя окалина

Такая окалина чаще всего вызвана слишком высоким расположением резака (высоким расположением дуги) или высокой скоростью резки, обычно она имеет вид брызг на деталях и легко удаляется.

4. Неравномерная окалина

Возникает при большой степени износа расходных деталей, образуется сверху или снизу детали.

Другие причины появления окалины

Окалина может быть образована и из-за качества используемого материала, его температуры, состояния поверхности (например, ржавчина), и состава. К примеру, на сплавах с большим содержанием углерода часто формируется больше окалины.

Советы по изготовлению плазмореза из инвертора своими руками

Аппарат резак

Как правило, плазмой листовой металл режется на крупных производствах, и делается это при изготовлении деталей сложной конфигурации. На промышленных станках режутся любые металлы: сталь, медь, латунь, алюминий, сверхтвердые сплавы. Примечательно, что плазменный резак вполне можно сделать собственноручно, хотя возможности устройства в этом случае будут несколько ограниченными. В крупносерийном производстве самодельный ручной плазморез непригоден, но вырезать им детали в своей мастерской, цехе или гараже удастся. В отношении конфигурации и твердости обрабатываемых заготовок ограничений практически нет. Однако они касаются скорости резания, размеров листа и толщины металла.

Описание самодельного плазмореза из инвертора

Рабочий резак

Плазморез своими руками легче смастерить, взяв за основу инверторный сварочный аппарат. Такой агрегат будет простым по конструкции, функциональным, с доступными основными узлами и деталями. Если какие-то детали не продаются, их тоже можно изготовить самостоятельно в мастерской с оборудованием средней сложности.

Самодельный аппарат не оборудуется ЧПУ, в чем его недостаток и преимущество одновременно. Минус ручного управления в невозможности изготовления двух совершенно одинаковых деталей: мелкие серии деталей в чем-то будут отличаться. Плюс в том, что не придется покупать дорогостоящее ЧПУ. Для мобильного плазмореза ЧПУ не нужно, так как того не требуют выполняемые на нем задачи.

Главные составные части самодельного агрегата:

  • плазмотрон;
  • осциллятор;
  • источник постоянного тока;
  • компрессор или баллон со сжатым газом;
  • кабели питания;
  • шланги подключения.

Итак, сложных элементов в конструкции нет. Однако все элементы должны иметь определенные характеристики.

Источник тока

Как пользоваться плазменные резаком

Плазменная резка требует того, чтобы сила тока была, по крайней мере, как для сварочного аппарата средней мощности. Ток такой силы вырабатывается обыкновенным сварочным трансформатором и инверторным аппаратом. В первом случае конструкция получается условно мобильной: из-за большого веса и габаритов трансформатора ее перемещение затруднено. Вместе с баллоном сжатого газа или компрессором система получается громоздкой.

Читайте так же:
Розетка с круглыми листьями

Трансформаторы имеют невысокий КПД, из-за чего расход электроэнергии при резке металла получается повышенным.

Схема с инвертором несколько проще и удобнее, а еще более выгодна в плане затрат энергии. Из сварочного инвертора выйдет довольно компактный резак, который разрежет металл толщиной до 30 мм. Промышленные установки режут металлические листы такой же толщины. Плазменный резак на трансформаторе способен разрезать даже более толстые заготовки, хотя подобное требуется не так часто.

Плюсы плазменной резки видны как раз на тонких и сверхтонких листах.

  • Гладкость кромок.
  • Точность линии.
  • Отсутствие брызг металла.
  • Отсутствие перегретых зон около места взаимодействия дуги и металла.

Самодельный резак собирается на базе инверторного сварочного аппарата любого типа. Неважно, какое количество рабочих режимов, нужен лишь постоянный ток силой больше 30 А.

Плазмотрон

Плазменный резак

Вторым по важности элементом является плазмотрон. Плазменный резак состоит из основного и добавочного электродов, первый сделан из тугоплавкого металла, а второй представляет собой сопло, обычно медное. Основной электрод служит катодом, а сопло – анодом, и во время работы это – обрабатываемая токопроводящая деталь.

Если рассматривать плазмотрон прямого действия, дуга возникает между заготовкой и резаком. Плазмотроны косвенного действия режут плазменной струей. Аппарат из инвертора рассчитан на прямое действие.

Электрод и сопло являются расходными материалами и заменяются по мере износа. Кроме них, в корпусе имеется изолятор, который разделяет катодный и анодный узлы, еще есть камера, где вихрится подаваемый газ. В сопле, коническом или полусферическом, сделано тонкое отверстие, через которое вырывается газ, раскаленный до 3000-5000°C .

В камеру газ поступает из баллона или подается из компрессора по шлангу, который совмещен с кабелями питания, образующими пакет из шлангов и кабелей. Элементы соединены в изоляционном рукаве либо соединены жгутом. Газ идет в камеру через прямой патрубок, который находится сверху или сбоку вихревой камеры, обеспечивающей перемещение рабочей среды лишь в одну сторону.

Принцип работы плазмотрона

Источник тока

Газ, поступающий под давлением в пространство между соплом и электродом, проходит в рабочее отверстие, удаляясь после в атмосферу. С включением осциллятора – устройства, которое вырабатывает импульсный высокочастотный ток, – между электродами появляется предварительная дуга и нагревает газ в ограниченном пространстве камеры сгорания. Поскольку температура нагрева очень высокая, газ превращается в плазму. В этом агрегатном состоянии ионизированы, то есть электрически заряжены, практически все атомы. Давление в камере резко повышается, и газ вырывается наружу раскаленной струей.

При поднесении к детали плазмотрона возникает вторая, более мощная, дуга. Если сила тока осциллятора – 30-60 А, рабочая дуга возникает при силе в 180-200 А. Она дополнительно разогревает газ, разгоняющийся под действием электричества до 1500 м/с. Комбинированное действие плазмы высокой температуры и скорости движения режет металл по тончайшей линии. Толщину разреза определяют свойства сопла.

Плазмотрон косвенного действия работает иначе. Роль главного анода в нем играет сопло. Из резака вместо дуги вырывается струя плазмы, режущая не токопроводящие материалы. Самодельное оборудование данного типа работает крайне редко. В связи со сложностью устройства плазмотрона и тонких настроек сделать его в кустарных условиях практически невозможно, хотя чертежи найти нетрудно. Он работает под высокими температурами и давлениями и становится опасным, если что-то сделано неправильно!

Осциллятор

Если некогда заниматься сборкой электрических схем и поиском деталей, возьмите осцилляторы заводского изготовления, к примеру, ВСД-02. Характеристики этих устройств более всего подходят для работы с инвертором. Осциллятор подсоединяется в схему питания плазмотрона последовательно или параллельно, в зависимости от того, что диктует инструкция конкретного прибора.

Читайте так же:
Чтобы не выдернуть розетку

Рабочий газ

Перед тем, как приступить к изготовлению плазмореза, продумайте сферу его применения. Если предстоит работа исключительно с черными металлами, обойтись можно одним лишь компрессором. Для меди, латуни и титана потребуется азот, а алюминий режется в смеси азота с водородом. Высоколегированные стали режут в аргоновой атмосфере, здесь аппарат рассчитывают и под сжатый газ.

Транспортировка устройства

Ввиду сложности конструкции устройства и многочисленности составляющих его компонентов, аппарат плазменной резки трудно разместить в ящике или переносном корпусе. Рекомендуется использовать складскую тележку для перемещения товаров. На тележке компактно расположится:

  • инвертор;
  • компрессор или баллоны;
  • кабельно-шланговая группа.

В пределах мастерской или цеха с перемещением проблем не будет. Когда аппарат потребуется транспортировать на какой-либо объект, он загружается в прицеп легковой машины.

Принципы

2.1 Нечто большее, чем просто одно из состояний вещества?

Как правильно понимать источники плазменной резки? Плазма представляет собой нагретый до высокой температуры газ, обладающий электропроводимостью, который состоит из положительно и отрицательно заряженных частиц, а также возбужденных и нейтральных атомов и молекул. Между процессами диссоциации, ионизации и рекомбинации, присущими плазменному состоянию, устанавливается динамический баланс. В результате плазма электрически нейтральна. В физике плазму часто называют четвёртым состоянием вещества. В природе плазменное состояние вещества, обусловленное высокими температурами, имеет место внутри солнца и других звёзд. Молния также является примером перехода вещества в плазменное состояние, происходящий под действием сил электрического поля большой величины.

Рисунок 1: Плазма — четвертое состояние вещества

Для того чтобы создать плазму для технических потребностей, газ либо сильно разогревается с помощью источника тепла, либо подвергается действию сильного электрического поля, так чтобы перевести его в ионизированное состояние.

2.2 Принцип плазменной резки

Плазменная резка – это процесс термической резки, при котором плазменная дуга обжимается, проходя через сопло. Дуга прямого действия, которая возникает, когда электрический ток протекает от неплавящегося электрода (катода) на изделие (анод), используется для резки материалов, обладающих электрической проводимостью. Эта форма плазменной резки является наиболее часто используемой. В случае дуги косвенного действия, она создаётся между электродом и соплом. Даже если используется режущий газ, в состав которого входит кислород, тепловой эффект плазменной дуги преобладает. Таким образом, данный метод не рассматривается как процесс кислородной резки, а скорее как резка путём плавки.

Плазменные газы в дуге частично подвергаются диссоциации и ионизации, что делает их электропроводящими. Благодаря высокой плотности энергии и температуре плазма расширяется и движется по направлению к изделию со скоростью, которая в три раза превышает скорость звука.

Благодаря рекомбинации атомов и молекул на поверхности изделия потреблённая энергия сразу же высвобождается и усиливает тепловой эффект воздействия плазменной дуги на изделие. В плазменной дуге температура доходит до 30 000 К. В сочетании с высокой кинетической энергией плазменного газа такая температура обеспечивает чрезвычайно высокую скорость резки всех материалов, обладающих электрической проводимостью, которая зависит от толщины материала.

Для начала процесса резки в первую очередь зажигается пилотная дуга между соплом и электродом путём подачи высокого напряжения. Эта низкоэнергетическая пилотная дуга подготавливает пространство между плазменным резаком и изделием, вызывая частичную ионизацию. Когда пилотная дуга контактирует с изделием (резка с лёта), благодаря автоматическому увеличению мощности зажигается основная плазменная дуга.

Рисунок 2: Принцип плазменной резки с помощью дуги прямого действия

Металлический материал плавится и частично испаряется благодаря тепловой энергии дуги и плазменного газа. Расплавленный металл выдувается из реза под действием кинетической энергии плазменного газа. В отличие от кислородной резки, при которой около 70% тепловой энергии вырабатывается благодаря сгоранию железа, в процессе плазменной резки энергия, требующаяся, для того чтобы расплавить материал в резе создаётся только под действием электричества.

Читайте так же:
Устройство механического таймера для розеток

Выбор используемого плазменного газа зависит от того, какой материал требуется разрезать. Например, одноатомный газ аргон и/или двухатомные газы, такие как водород, азот, кислород и смеси этих газов, а также очищенный воздух, используются в качестве плазменного газа и режущего газа.

Резаки могут иметь как водяное, так и газовое охлаждение. В зависимости от того, где используются процессы плазменной резки, различают процессы, выполняемые над водой и на ней, а также такие, которые производятся под поверхностью воды.

2.3 Оборудование для плазменной резки

2.3.1 Источник питания для плазменной резки

Источник питания для плазменной резки подаёт рабочее напряжение и ток резки для основной и вспомогательной дуги. Напряжение источника питания для плазменной резки без нагрузки находится в диапазоне между 240 и 400 В. В состав источника питания входит система зажигания пилотной дуги (вспомогательной плазменной дуги), назначение которой состоит в возбуждении основной плазменной дуги. Для того чтобы это выполнить сначала зажигают плазменную дугу косвенного действия, используя импульсы высокого напряжения. Назначение данной дуги состоит в ионизации пространства между соплом и изделием, что позволяет возбудить основную плазменную дугу.

Рисунок 3: Пример установки для плазменной резки

Источники питания для плазменной резки либо имеют круто падающую кривую вольтамперной характеристики (рис. 6), либо постоянную токовую характеристику (рис. 7), в связи с чем при удлинении дуги мощность резки изменяется незначительно или остаётся неизменной.

Рис.6: Источник питания
для плазменной резки с
крутоубывающей (крутопадающей характеристикой) кривой напряжения и тока
Рис.7: Источник питания для плазменной резки с постояноой токовой характеристикой (вертикальнок падение)

2.3.2 Электрод и сопло плазменного резака

Повышение эффективности плазменной резки в большой степени зависит от конструкции плазменного резака. Чем плотнее плазменная дуга обжимается, тем выше скорость резки и качество кромки реза.

Важнейшими деталями плазменного резака являются плазменное сопло и электрод. Как плазменное сопло, так и электрод являются быстроизнашивающимися деталями. Неправильный подбор, либо неверное использование сопла или электрода могут значительно сократить срок их службы и повредить резак.

Срок службы электрода в значительной степени определяется силой тока резки, количеством зажиганий, а также типом используемого плазменного газа. Кроме того, управление газом и мощностью вначале и в конце резки, а также рассеяние тепла от электрода также играет ключевую роль. Обычно используются электроды стержневой формы из вольфрама, а также имеющие форму пальца из циркония или гафния, которые можно сделать заострёнными или плоскими. Ввиду того, что они подвержены эрозии, электроды из вольфрама могут применяться только с инертными плазменными газами и их смесями, а также с газами с низкой реакционной способностью и восстановительными плазменными газами. При использовании чистого кислорода, либо плазменных газов, в состав которых входит кислород, электроды будут служить значительно дольше, если они будут изготовлены из циркония или гафния. Эти материалы естественным образом формируют защитный слой, плавящийся при более высокой температуре (табл. 1), и, к тому же, они заключены в основную оболочку, обладающую очень большой теплопроводностью, которая интенсивно охлаждается. Если в плазменной резке используется кислород, увеличения срока службы электрода можно добиться, подавая два газа: процесс зажигания проводится с использованием газа с низкой окислительной способностью, а сам процесс резки с использованием кислорода.

Ключевые факторы, влияющие на срок службы сопла:

  • диаметр на выходе сопла
  • масса и теплопроводность материала сопла
  • выход (произведение силы тока резания на напряжение резания)
  • время действия плазменной дуги
  • количество зажиганий
  • последовательность прожигания отверстий
  • и интенсивность охлаждения.

Водяное охлаждение является более интенсивным. Воздушное охлаждение требует большего количества газа.

Таблица 1: Типовые величины для расходных деталей, применяемых с плазменными резаками

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector