Sanitaryhygiene.ru

Санитары Гигиены
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Отгорание нуля, что происходит и как защититься

Отгорание нуля, что происходит и как защититься?

отгорание нуля

Привет, друзья. Сталкивались когда-нибудь с явлением «отгорание нуля»? Если нет, то вы счастливый человек. Но знать об этом, особенно электрикам, будет полезно. Поговорим о том, почему этот таинственный ноль имеет тенденцию отгорать, что происходит при этом и какая бывает защита от отгорания нуля ? Для того чтобы понять это, немного вспомним физику.

Нашел в интернете хорошее видео по теме, коротко и ясно, если не любите читать, смотрите ниже. Итак, начнем.

Ноль, для однофазной цепи, это название проводника, который не находиться под высоким потенциалом относительно земли. Фаза, это второй проводник , она имеет высокий потенциал переменного напряжения относительно земли. В России, чаще всего, это 220-230 Вольт. Ноль при этом не проявляет тенденции к отгоранию.

компенсация тока

Основная загвоздка — все линии электропередачи, являются трехфазными. Рассмотрим традиционную схему « звезда »:

трехфазная нагрузка

Здесь и появляется понятие « нулевой проводник ».

В трех одинаковых нагрузках, переменный ток каждой фазы сдвинут по фазе на 1/3. В идеале, эти токи компенсируют друг друга. При такой нагрузке, в средней точке, векторная сумма токов равна нулю.

Получается, что через нулевой провод, подключенный к средней точке, ток не течет (он практически не нужен).

Незначительный ток на нулевом проводнике все же возникает. Это происходит, когда нагрузки на фазах не полностью компенсируют друг друга, тоесть разные. Прямое доказательство этому можно увидеть на практике, посмотрите на четырехжильные кабели для трехфазных цепей, нулевая жила вдвое меньшего сечения, чем фазные. Зачем тратить дефицитную медь, если тока в жиле практически нет? Имеется смысл…

При сосредоточенной нагрузке, в трехфазной цепи, ноль тоже не расположен к отгоранию.

Интересное начинается тогда, когда к трехфазной цепи начинают подключать однофазные нагрузки (многоквартирных домах, например). Каждая нагрузка представляет случайно выбранное устройство.

При использовании одной фазы из трехфазной цепи, их стараются распределить по мощности так, чтобы на каждую приходилась примерно одинаковая нагрузка.

электрическая схема звезда

Все понимают, что полного равенства при этом не достигнуть. Жители дома будут случайным образом включать, выключать электроприборы, поэтому нагрузка будет постоянно меняться. Полной компенсации токов в средней точке происходить не будет, но ток нулевого проводника обычно не достигает максимального значения, большего току в одной из фаз. Ситуация предсказуемая, отгорание нуля при этом бывает крайне редко.

ноль не расположен к отгоранию

Почему происходит отгорание нуля?

Сегодня мы регулярно пользуемся большим количеством электрических приборов, большинство из них это импульсные источники питания. Это телевизоры, радиоприемники, компьютеры итд. Характер потребления тока этими приборами сильно отличается от прежних.

В цепи, возникают дополнительные импульсные токи, которые не компенсируются в средней точке. Прибавляем к ним некомпенсированные, вызванные разностью однофазных нагрузок и получаем ток, близкий к самому большому току одной из фаз, или даже превышающий его.

отгорание нуля

Вот мы и пришли к благоприятным условиям для отгорания нуля. Чаще всего отгорание происходит в слабых местах, где: поврежден провод, занижено сечение кабеля, плохой контакт.

С каждым днем в обиходе появляется все больше электроприборов, соответственно ситуация ухудшается. Поэтому при монтаже электропроводки, необходимо учитывать высокую вероятность отгорания нулевого проводника. Пренебрегать этим не стоит .

Что происходит при отгорании нуля?

В лучшем случае погаснет свет, перестанут работать розетки. О плохом писать не хочется, думаю, понимаете, что перегрузка приводит к нагреву провода, плавке, пробою изоляции итп.

Читайте так же:
Принцип работы выключателя массы маз

Кроме того, при отгорании нуля, в цепи могут происходить серьезные скачки напряжения. На фазе, где было повышенное потребление, напряжение падает практически до нуля. В то же время, на фазе где потребление было меньше всего, оно вырастает до 380 Вольт. Чувствуете чем пахнет?

Подобное явление может вывести из строя вашу технику !

Что делать, спросите вы? Существует защита.

Защита от отгорания нуля.

Для защиты от вышеуказанных инцестов умные люди придумали реле контроля напряжения . Если напряжение выходит за допустимые пределы, реле отключает его, защищая тем самым все подключенные приборы и оборудование.

реле контроля напряжения

Напоследок небольшое видео, где наглядно можно увидеть, что происходит при отгорании нуля.

Такие вот дела. Если есть, что дополнить, оставьте комментарий.

Также советую подписаться на обновления блога , чтобы , получать новые статьи прямо к себе на e-mail.

Статьи по теме:

Теперь вы знаете, что такое отгорание нуля, что происходит при отгорании нуля и какая бывает защита от отгорания нуля.

Простые и сложные способы определения фазы, ноля и заземления

Монтаж нового оборудования с частичной заменой электрической проводки или без нее обязательно включает четкое определение проводов с фазой, «нулем» и заземлением. С поиском фазы вопросов нет: воспользуйтесь отверткой со встроенным индикатором. Если на объекте применяется проводка с двумя жилами, то автоматически понятно — первая является «фазой», вторая — «нулем». Сложности возникают при работе с системами, состоящими из трех токоведущих кабелей, поэтому ниже рассказано о том, как отличить «ноль» от заземления.

Проблемы связаны с фактически одинаковыми электрическими параметрами двух проводников. Именно поэтому не пытайтесь отличить «ноль» от «земли», используя обычную лампочку: светиться она будет в обоих случаях. Приблизительно идентичными будут значения напряжения при замере с помощью мультиметра на парах фаза-ноль и фаза-земля (около 220 В). Впрочем, данный метод все же актуален для определенных ситуаций.

Контролька 220В

Определяем фазу

Чтобы найти «фазу», достаточно воспользоваться индикаторной отверткой — простым инструментом, который должен быть у любого хозяина. Прикоснитесь жалом к каждому проводнику, одновременно удерживая палец на верхней, металлической части рукоятки отвертки. Когда световой индикатор внутри отвертки загорится, значит, вы коснулись фазного провода. Однако помните, что при выполнении соответствующих операций электрическая сеть не обесточивается.

Индикаторная отверка

Методы определения

Существует несколько способов, позволяющих отличить «ноль» от «земли».

Цветовая маркировка проводов

Профессиональные и добросовестные электрики никогда не будут монтировать проводку без соблюдения цветовой маркировки. При условии, что монтаж осуществлялся с соблюдением основных правил ПУЭ, каждый проводник имеет определенный цвет в зависимости от выполняемой функции:

  1. Синяя/голубая оболочка используется для маркировки нулевого проводника.
  2. Желто-зеленая оболочка (полосками) применяется для обозначения заземляющей жилы.
  3. С фазным проводом сложнее, поскольку он может иметь оболочку белого, черного, красного, оранжевого и других цветов. Независимо от выбранного цвета «фазы» такой монтаж будет правильным.

Помните: даже если были обнаружены жилы соответствующих цветов, по которым можно определить «фазу», «ноль» и «землю», не стоит спешить с выводами. Быть полностью уверенным в правильности монтажа можно исключительно при условии, что вы выполнили его самостоятельно. В остальных ситуациях подобный метод поиска «ноля» и «земли» будет некорректным. Поэтому переходите к остальным способам.

Дифференциальный ток

Намного проще отличить «ноль» от «земли», если на обслуживаемом участке имеется устройство защитного отключения (УЗО) либо дифференциальный автомат. Воспользуйтесь лампой с проводами, подключите прибор к фазе и одному из двух проводников. Если защита не сработала, то лампочка подключена правильно — к паре фаза-ноль. Если сработало УЗО и ветка оказалась обесточенной, то была задействована пара фаза-земля.

Читайте так же:
Настенные выключатели как устанавливать

Если УЗО не сработало в обоих случаях, то возможны проблемы с функциональностью оборудования. О работоспособности устройства дифференциальной защиты можно судить по проведенному испытанию. На любом подобном оборудовании есть кнопка «Тест». Нажмите на нее.

Поиск фазы с УЗО

Примечание. Защитное устройство может не сработать по другой причине: если протекающий через лампу ток ниже номинального дифференциального значения (при котором оборудование должно выполнять обесточивание цепи). К примеру, лампа накаливания пропускает ток около 20-40 мА. Если используется УЗО на 100 мА, то логично, что прибор не сработает.

Заземляющие контакты на розетках

Этот способ подходит для любого объекта, на котором используются двухполюсный вводный автомат и заземляющие розетки. Отключите автомат, что гарантирует отсутствие связи между «нолем» и «землей». Сделайте аналогичное со всеми бытовыми приборами. Возьмите мультиметр, активируйте режим «Прозвонка» и выполните процедуру между заземляющим контактом на розетке и двумя неизвестными проводами.

Когда заземляющий контакт розетки будет соединен с «нолем», на мультиметре будет показано огромное сопротивление, с «землей» — приближенное к нулевому значению. Данный метод поможет убедиться в правильности подключения заземляющих розеток.

Розетка с заземлением

Использование мультиметра

Перед проверкой токоведущих жил с помощью мультиметра следует зачистить проводку. Не забывайте о мерах предосторожности и обязательно выполните обесточивание электрической сети на обслуживаемом объекте.

Если электрическая проводка не имеет цветовой/символьной маркировки либо монтаж выполнялся неизвестным мастером, тогда воспользуйтесь мультиметром. Однако сперва при помощи индикаторной отвертки определите «фазу». Настройте мультиметр, выбрав диапазон замера переменного напряжения более 220 В. Можно взять измерительный прибор любого типа. Не имеет значения конкретный размер диапазона: главное — выставить его выше 220 В.

Поиск заземления мультиметром

Соедините через мультиметр «фазу» с одним, а затем — другим проводником. На паре фаза-ноль значение напряжения будет ненамного выше, чем на паре фаза-земля. Это позволит отличить «ноль» от «земли».

Примечание. Определение «земли» при помощи мультиметра актуально для более старых электрических сетей, построенных по конфигурации ТТ. Для современных топологий TN-C-S метод неактуален. Во втором случае нулевой и заземляющий проводники разделяются уже внутри здания, поэтому электрически являются идентичными и связанными между собой. У них одинаковое сопротивление, а, значит, при использовании мультиметра на обеих парах будет равная разница потенциалов.

Не подходит мультиметр для поиска заземляющего проводника в электрической сети TN-S. «Ноль» и «земля» разделены от источника энергии до потребителя. Из-за разной длины проводов будет совершенно иное сопротивление, которое обуславливает полученную разницу в напряжении. Может оказаться, что разница потенциалов на паре фаза-земля будет выше, нежели на паре фаза-ноль.

Отключение нулевого провода (электрический щиток)

Убедитесь, что электрические приборы были отключены от сети, благодаря чему ток гарантированно не будет поступать на нулевой проводник. Загляните в распределительный щиток, расположение которого регламентируется правилами ПУЭ, отсоедините нулевой провод (открутите зажимы, вытащите кабель из вводного автомата и заизолируйте). Либо удалите проводник с нулевой шины, которая используется для дальнейшего разветвления нейтрали. В квартире или частном доме останутся два работающих проводника — заземляющий и фазный.

Вновь возьмите в руки мультиметр, измерьте напряжение между фазой (определяется индикаторной отверткой) и двумя другими проводниками. Напряжение появится исключительно между «фазой» и «землей», поскольку нулевой провод отключен от щитка.

Примечание. Существует такое понятие, как «наведенное напряжение». Не вдаваясь в подробности, отметим, что вследствие него при измерении пары фаза-ноль мультиметр покажет вольтаж, отличный от «0» (обычно не более 10 В).

Метод прозвонки

Прозвонка — один из самых популярных методов, использующихся мастерами для поиска мест обрыва электропроводки. Он подходит для определения «ноля» и «земли». Данный способ актуален при условии, что вы знаете расположение нулевого и заземляющего проводников на одном из концов. Например, когда прозвонка осуществляется от распределительного щитка, но по какой-то причине на другом конце провода имеют другую цветовую маркировку (либо одинакового цвета).

Читайте так же:
Обходной выключатель по английский

Произведите полное обесточивание. Прозвонка может выполняться профессиональными приборами (на любых моделях мультиметра имеется соответствующая функция) или обычной схемой из лампочки, батарейки и проводов.

Прозвонка проводов

Если длина измеряемых проводников небольшая, то воспользуйтесь куском кабеля, подсоединив отрезок к концам участка. Если требуется прозвонить проводник, идущий от распределительного щитка до розетки в дальней комнате, то лучше воспользоваться известной жилой: до обесточивания индикаторной отверткой определите и промаркируйте «фазу» (на обоих концах).

Один щуп мультиметра (или самодельного прибора) подключите к отмеченному фазному проводу, другой — к одному, а затем — другому неизвестному проводнику. Переходите к противоположному концу линии. Подключите поочередно два конца неопределенных жил к промаркированному фазному кабелю. Обозначьте их.

Разница между нулем и землей

Последствия неправильной коммутации нулевого и заземляющего проводников могут быть разными:

  1. Неправильная работа приборов учета электроэнергии в меньшую или большую сторону. Соответственно в первом случае, когда компания-поставщик найдет ошибку, может быть начислен огромный штраф.
  2. Некорректная работа устройств защитного отключения и дифференциальных автоматов: при существенных перепадах напряжения будет постоянно перегорать бытовая техника.
  3. Отсутствие защиты человека от поражения током. Более того, неправильная схема может стать основной причиной удара.

В статье были рассмотрены способы, позволяющие отличить нулевой и заземляющий проводники в трехжильных системах. Расположены они в порядке возрастания сложности действий. Только правильный монтаж электрической проводки гарантирует корректную работу УЗО, дифференциальных автоматов и розеток с заземляющим контуром. Если есть малейшие сомнения, лучше обратиться за помощью к квалифицированному специалисту, предоставляющему акт о проведении ремонтных работ.

Обрыв нулевого провода: последствия и способы защиты

Последствия обрыва нуля в трехфазных и однофазных сетях

К домовому электрощиту многоквартирного дома подходит 3- х фазное напряжение 380 В. К подъездному щиту также подводится три фазы, для отдельной сети квартиры используется одна фаза и нейтраль. Такая система электропитания TN-C применялась для старых построек и существует до сих пор.

obryv-nulya-01

Двухпроводная сеть частного дома с защитным заземлением

В новых домах используется система питания TN-C-S с третьим, дополнительным защитным проводником. В многоквартирном доме все фазы распределены по квартирам равномерно таким образом, чтобы нагрузки на все три фазы были одинаковыми и перекос фаз был бы минимальным.

Однако при обрыве нулевого провода происходит перераспределение напряжения по фазам и возникает перекос фаз. В результате в одной квартире возможно напряжение поднимется до 380 В, а в другой будет занижена до 170 В. В обоих случаях бытовые электроприборы и техника выходят из строя.

Особенно чувствительны к таким перекосам фаз бытовые приборы, имеющие электродвигатели — это стиральные машины, холодильники, кондиционеры, вентиляторы, пылесосы и т. д. Величина напряжения при перекосе фаз зависит от числа подключенных потребителей электроэнергии на всех фазах и их мощности.

Читайте так же:
Ящик для автоматических выключателей abb

Что происходит при обрыве нуля? Напряжение с другой фазы, через подключенные приборы других квартир, поступает на общий нулевой провод и в квартирах в розетках появляется напряжение не 220 В (фаза – ноль, как должно быть), а напряжение 380 В (фаза — фаза).

В результате, подключенные бытовые приборы выходят из строя из-за перекоса напряжения сети. Хуже еще если в электропроводке старых построек с системой электропитания TN-C в качестве защитного проводника используется нулевой провод, который присоединяется к корпусу бытовых приборов.

sistema-energosnabzheniya-tn-c-s

Система энергоснабжения TN-C-S с дополнительным проводником заземления PE применяемая в новых постройках

Тогда при прикосновении к корпусу, человек получит опасный удар током. В новых домах система заземления TN-C-S с проводником защитного заземления, на корпусах бытовых приборов опасного напряжения не будет, опасности поражения током нет.

Если обрыв нуля в однофазной сети произошел у вас в квартире, то опасности для бытовых приборов не будет, а вот при касании корпуса прибора вас поразит током (старая электропроводка TN-C) если использовать рабочий ноль в качестве защитного заземления.

Если в дом подведена трехфазная сеть, то при обрыве нулевого провода в трехфазной сети возникнет опасность выхода из строя бытовых приборов, не зависимо где произошел обрыв в магистральной линии или у вас в доме.

Причины возникновения обрыва нуля

Причин достаточно много — это обрыв нейтрали на подстанции, в домовых и подъездных щитах, неопытность электриков, отсутствие обслуживания электросетей и далее. Основной причиной обрыва нейтрали — это некачественное крепление провода.

При слабом креплении нейтрали провод нагревается, окисляется (что увеличивает сопротивление перехода нейтраль — корпус) и перегорает. Также возможно обгорание нейтрали при использовании больших номиналов предохранителей.

Нередко обрывается нейтраль при сильных порывах ветра, обледенений, ремонтных работах и т. д. Как видно имеется масса причин обрыва нейтрали. Чтобы избежать последствий от этой неисправности нужно выбрать правильный вариант защиты.

Защита от обрыва нуля

Электропроводка в старых постройках системы заземления TN-C не имеет никакой защиты от обрыва нуля и представляет с собой большую опасность при использовании нейтрали в качестве заземляющего проводника корпусов электроприборов.

sistema-tn-c-obryva-nulya-netСистема TN-C. Обрыва нуля нет. Опасности нет sistema-tn-c-posledstviya-pri-obryve-nulyaСистема TN-C. Последствия при обрыве нуля

В новых постройках системы электроснабжения TN-C-S с отдельным заземляющим проводником, вероятность поражения опасным для жизни током уменьшается. Уменьшить сопротивление заземления, и улучшить качество защиты позволяют дополнительные повторные заземления у каждого дома.

Однако эта система заземления не защитит ваши бытовые приборы при обрыве нуля. Для защиты приборов, техники и поражения током человека помогут реле контроля напряжения или стабилизаторы напряжения. Реле напряжения отключит вашу электросеть при опасных перенапряжениях и минимальных значениях напряжения в сети. Помогут еще и УЗО, дифавтоматы с защитой от обрыва нуля.

Сработает ли УЗО при обрыве нуля

УЗО отключит электросеть при касании корпуса человеком, если в качестве заземляющего проводника использована нейтраль. В этом случае через человека потечет ток утечки, на которую среагирует УЗО. Обычные УЗО и дифавтоматы, если у них нет функции защиты от перенапряжений, не защитят от поломок бытовых электроприборов.

Вывод. Для защиты человека от поражения опасным высоким напряжением и выхода из строя электробытовых приборов, техники, ламп освещения поможет УЗО или дифавтомат с защитой от обрыва нуля. Также можно поставить реле напряжения и обычные УЗО, дифавтомат или реле контроля напряжения с отдельным защитным заземлением.

Читайте так же:
Схема распайки для проходного выключателя

Ноль бьет током — в чем причины

Почему ноль бьет током: причины, откуда напряжение на нуле

Удар током можно получить, касаясь сразу к двум оголённым проводникам, к фазе и нулю. Также, поражение электрическим током происходит в том случае, когда есть контакт с землей и фазой.

Птицы не получают удар током сидя высоко на фазе по той причине, что отсутствует второй проводник, ноль либо земля. Однако случаются и такие ситуации, когда в розетке оказывается сразу две фазы. Проверить это достаточно просто, если взять в руки индикаторную отвертку.

Скажем так, что проблема достаточно распространённая. Ноль может бить током даже в тех случаях, когда индикатор ничего не показывает. Достаточно стоять голыми ногами на полу или прикасаться рукой к стене и нулю, чтобы получить внушительный разряд током.

Почему ноль бьет током?

Почему так происходит? Откуда напряжение на нуле? В чем могут быть проблемы? Давайте разбираться.

Почему ноль бьет током?

Недавно со мной произошёл интересный случай. В общем, занимался я монтажом карнизной планки и случайно попал при бурении стен в провод, который питал светодиодный фонарь на улице.

Провод задел буром аккуратно, так, что не повредил сразу два провода, а только изоляцию. Когда подключил прожектор то, заметил, что светодиоды светятся даже в том случае, если выключатель отключён.

Почему ноль бьет током?

Правда, перед этим, когда я подсоединял фонарь, меня немного ударил ноль, хотя автоматические выключатели я соответственно отключал перед этим. К чему это я? Да все к тому, что первой причиной того, что ноль бьет током, это повреждение проводки и утечка потенциала на ноль.

В таком случае на индикаторе будет гореть лампочка, поскольку на ноль попадает фазное напряжение.

Кроме этой причины, ноль может бить током и вследствие:

  • Обрыва нейтрали;
  • Из-за неправильно подключённой электропроводки в щитке;
  • Вследствие нарушения изоляции.

Рассмотрим более подробно данные проблемы, из-за которых ноль может бить током.

Обрыв нуля

Обрыв нейтрали является самой опасной проблемой, которая может произойти. В таком случае опасный потенциал оказывается сразу на двух проводниках.

Обрыв нуля

Часто обрыв происходит вследствие отгорания нуля в квартире или щитке. Важно знать! Что для возникновения опасного напряжения на нуле в данном случае, достаточно чтобы в розетку был включён хоть один из потребителей.

Замыкание фазы на нуль

Часто происходит и так, что вследствие повреждения проводки и изоляции, фаза замыкается с нулём. Конечно же, в таком случае должен сработать автоматический выключатель.

Замыкание фазы на нуль

Однако при чрезмерной длине проводов и неправильно подобранном номинале автомата такое часто не происходит, что ведёт к возникновению других, не менее опасных проблем. Поэтому чаще всего это все-таки повреждение фазного провода в стене, через который ток уходит на ноль и тот начинает бить током.

Перекос фаз

Также данная проблема, так или иначе, может быть связана с перекосом фаз. Перекос фаз — это неравномерное распределение нагрузок между тремя фазами, в результате чего на нуле появляется так называемый «уравнительный ток».

Перекос фаз

В том случае, если электропроводка старая, то разница между потенциалами на нулевой клемме может достигать 30 Вольт и более, что вполне достаточно для неприятного удара электрическим током.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector