Sanitaryhygiene.ru

Санитары Гигиены
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

2 Схемы

LM317 и ШИМ управление от Arduino

Есть очень недорогие готовые модули регулятора напряжения, то есть стабилизатора на базе микросхем LM317. Вот схема принципиальная сборки и подключения такого модуля или отдельно микросхемы LM317:

LM317 и ШИМ управление от Arduino

Поскольку этот блок соответствует типичной схеме применения LM317, он отлично подходит для питания небольших проектов устройств или любой другой схемы, требующей постоянного напряжения. Согласно документации, чип LM317 представляет собой регулируемый трехконтактный стабилизатор положительного напряжения, способный выдавать более 1,5 А в диапазоне выхода от 1,25 В до 37 В. Для установки выходного напряжения требуется всего два внешних резистора. LM317 также включает ограничение тока, защиту от тепловой перегрузки и защиту безопасной рабочей зоны. Защита от перегрузки остается работоспособной, даже если контакт ADJ отключен.

LM317 и ШИМ управление от Arduino

Далее представлена функциональная блок-схема LM317. Операционный усилитель с входом смещения 1,25 В на ADJ обеспечивает простое программирование выходного напряжения или тока (но не обоих одновременно). Для устройств регулирования напряжения два резистора устанавливают выходное напряжение.

Поскольку значение VREF постоянно, значение R1 определяет количество тока, протекающего через R1 и R2. Значение R2 определяет падение IR от вывода ADJ к GND — более высокие значения R2 переводятся в более высокое V OUT. Но так как LM317 передает свой ток смещения на вывод OUT, нагрузка или обратная связь должны потреблять этот минимальный ток для регулирования, иначе потенциал выхода может быть слишком высоким.

Это небольшое дополнение в виде использования резистора 240 Ом в качестве верхнего резистора R1. R1 на 240 Ом является основным требованием для LM317 при использовании в качестве регулятора напряжения, поскольку надо чтобы внутренний источник опорного напряжения 1,25 В имел разрешающий ток 100 мкА. В спецификации для минимального тока нагрузки указано типичное значение 3,5 мА, максимум 10 мА. С резистором 240 Ом в качестве R1 как раз и получим ток около 5 мА, протекающий через нижний резистор R2.

LM317 и ШИМ-управление

Если верхний резистор R1 оставить на своем месте, а нижний R2 заменить источником напряжения, выходное напряжение LM317 будет примерно на 1,25 В выше входного. Следовательно, если подавать переменное напряжение от внешнего источника, например от микроконтроллера, сможем управлять выходом LM317 вместо использования традиционного подстроечного резистора или потенциометра.

Давайте объединим базовую схему стабилизатора LM317 с микроконтроллером, чтобы создать дистанционно управляемый регулируемый источник питания.

Теперь, когда выбрали стабилизатор напряжения, пришло время собрать вокруг него остальную часть схемы. Регулировка м/с с помощью внешнего источника напряжения это хорошо, но как обеспечить измененное напряжение на выводе ADJ? Самый простой способ — задействовать широтно-импульсную модуляцию (ШИМ) от Arduino с операционным усилителем. На рисунке ниже показана идея.

LM317 и ШИМ управление от Arduino

Тут создается аналоговое напряжение с помощью операционного усилителя LM358 (IC2A) вместе с резистором (R3) и конденсатором (C4), которые образуют RC-фильтр нижних частот (ФНЧ). ФНЧ преобразует напряжение ШИМ в постоянный сигнал. Увеличение частоты ШИМ должно уменьшить пульсации на выходе. Аналогичным образом, увеличение номинала резистора приводит к такому-же результату, но увеличивает время нарастания RC-цепочки. Можно и не использовать операционный усилитель, но у него есть преимущества. Например он формирует определенную степень защиты для Arduino.

Программа ШИМ для Arduino

На вход схемы подается сигнал ШИМ 5 В от Arduino Uno. В Arduino Uno PWM есть две частоты по умолчанию — 490 Гц и 980 Гц. Здесь используется цифровой вывод D3 с выходом ШИМ 490 Гц. Вот базовый скетч PWM на Arduino Uno.

int pulseOut = 3; // D3

void setup()

<

pinMode(pulseOut, OUTPUT);

>

void loop()

<

analogWrite(pulseOut, 0); // Minimum

delay(6000);

analogWrite(pulseOut, 128); // Middle

delay(6000);

analogWrite(pulseOut, 255); // Maximum

delay(6000);

>

Во время тестирования использовался обычный адаптер постоянного тока 9 В / 1 А для питания схемы Arduino и LM358, а модуль LM317 питался от БП 12 В. Источник питания 9 В будет работать для LM358, но максимальный выход от него будет близок только к 5 В. Это приводит к максимальному выходному вольтажу 0f 6,2 В от модуля LM317 (2,2 В — минимальное выходное напряжение). Можно конечно изменить напряжение источника питания операционного усилителя после настройки ОУ на умножение входного сигнала ШИМ 0–5 В на 10 (или около того), чтобы получить более высокие выходные напряжения от модуля LM317.

Читайте так же:
Схема включения света с разных выключателей

LM317 и ШИМ управление от Arduino

Чем выше частота ШИМ-сигнала, тем меньше пульсация напряжения на выходе схемы ФНЧ. Если используется частота по умолчанию цифрового ШИМ-вывода D3 (490 Гц), она слишком мала для приличной настройки. Необходимо увеличить эту частоту ШИМ до уровня в несколько кГц, чтобы получить более стабильное выходное напряжение. Можно сделать это изменив регистр таймера Ардуино.

LM317 и ШИМ управление от Arduino

Вот такая получилась идея по необычному применению LM317 стабилизатора, который можно использовать в самых разных устройствах автоматики.

Небольшая доработка лабораторного БП на LM317. Регулировка величины ограничения тока.

Всем хорош мой лабораторный блок питания на LM317, описанный здесь.

удобен в работе, надёжен, т.к. имеет хорошую защиту, как от перегрева, так и от перегрузки по току и короткого замыкания в нагрузке. И не сосчитать уж сейчас сколько раз реально это выручало меня в практической работе. Но порог срабатывания штатной защиты от перегрузки по току, как и ток короткого замыкания, у LM317 достаточно большой и достигает 2…3А – в зависимости от падения напряжения на стабилизаторе и никак не регулируется, так что эффективно защищая себя, LM317 никак не защищает слаботочную схему (нагрузку) от перегрузки по току.

Предлагаю вашему вниманию очень простой и надёжно работающий вариант защиты от перегрузки по току (далее – просто схемы защиты) с возможностью ступенчатой регулировки в широких пределах величины ограничения тока нагрузки LM317.

Упрощенная схема защиты для типового включения стабилизатора напряжения на LM317 представлена на рис.1. Вновь вводимые детали схемы защиты показаны красным цветом. Она состоит из датчика тока на резисторе R3 и регулирующего кремниевого транзистора VT1, включённых в отрицательный провод цепи питания стабилизатора. Резисторы R1 и R2 защищают транзистор от перегрузки по току соответственно по цепи базы и коллектора. При работе стабилизатора в штатном режиме по резистору R3 протекает ток нагрузки. Как только падение на нём достигнет напряжения открывания транзистора VТ1 (примерно 0,6 В), он откроется и через коллектор начнёт «притягивать» вывод 1 микросхемы к отрицательному (по отношению к общему проводу) потенциалу эмиттера, величина которого равна напряжению база/эмиттер за вычетом напряжения насыщения коллектор/эмиттер (т.е. 0.6В-0.1В)=0.5В. Схема переходит в режим стабилизации выходного тока на заданном уровне. Поскольку для полного запирания LM317 на её управляющий вывод 1 нужно подать отрицательное напряжение 1,25В, перед схемой защиты включен прямосмещённый кремниевый диод VD3, обеспечивающий дополнительный сдвиг уровня отрицательного напряжения на 0.7…0.8В.

Читайте так же:
Установка выключателя света с индикатор

Величина сопротивления резистора R3 задаёт порог срабатывания защиты и переход в режим стабилизации тока и может быть выбрана по формуле R[Ом]=0,6/I[А]. Для большей точности при выборе малых пределов срабатывания не забываем учесть ток потребления самой LM317 (примерно 5-6 мА), также протекающий через датчик тока. Например, показанный на схеме резистор 1.2 Ом задаёт порог 500 мА.

Полная принципиальная схема доработанного лабораторного блока питания представлена на рис.2. Схема защиты показана отдельно и имеет нумерацию деталей со знаком апострофа. В исходную схему БП она включается в разрыв отрицательно провода питания (точки. А и В) и к выводу 1 LM317 (точка С). Как видно, дополнительно к описанному выше введён переключатель пределов, обеспечивающий ступенчатую регулировку величины ограничения тока нагрузки LM317. В данном случае применён малогабаритный галетный переключатель на 6 положений и 2 направления. Пределы по току выбраны 20,50,100, 200, 500мА и 2А. Токовый датчик наименьшего предела 20 мА (резистор R3) во избежание скачкой выходного напряжения при переключении пределов подключён постоянно, а остальные резисторы-датчики тока подключаются параллельно нему. Поэтому расчёт их сопротивлений под свои требования должен учитывать эту особенность.

Номинал R3 рассчитываем так же как, как показано выше R3=0,6/(0,02+0,005)=24 Ома, а для остальных пределов сначала определяем требуемое сопротивление шунта Rтр[Ом]=0,6/I[А], а затем вычисляем номинал реального резистора Rn с учётом параллельно включённого R3:

Диод должен быть кремниевый, рассчитанный на максимальный прямой ток не менее 3А, кроме указанного на схеме подойдут 1N5404, КД202, Д242 и т.п. В принципе можно поставить и Шоттки, но только 2 штуки последовательно. Транзистор любой с с усилением по току не менее 100 и допустимым током коллектора не менее 500 мА 2N2222, 2N5551 и т.п.

Всё детали схемы защиты смонтированы на галетном переключателе. Для большей надёжности обе группы контактов переключателя соединены параллельно.

Вид на монтаж сбоку

Вид на монтаж сзади

В качестве примера на фото показа реакция БП с установленным выходным напряжением +12.6В на замыкание выхода пинцетом на пределах защиты по току 200

Короткое замыкание на пределе 200 мА

Короткое замыкание на пределе 500 мА

Как видим, сопротивление пинцета примерно 0,3 Ома. Таким же образом теперь можно очень просто измерять номинал низкоомных резисторов. Да и вообще теперь, при наличии режима стабилизации тока, многие виды измерений существенно упрощаются: при токе 20 мА можно тестировать стабилитроны напряжением стабилизации до 24 В, заряжать аккумуляторы и многое другое.

Lm317 регулятор тока светодиода

Vin (входное напряжение): 3-40 Вольт
Vout (выходное напряжение): 1,25-37 Вольт
Выходной ток: до 1,5 Ампер
Максимальная рассеиваемая мощность: 20 Ватт
Формула для расчета выходного (Vout) напряжения: Vout = 1,25 * (1 + R2/R1)
*Сопротивления в Омах
*Значения напряжения получаем в Вольтах

Данная простая схема позволяет выпрямить переменное напряжение в постоянное благодаря диодному мосту из диодов VD1-VD4, а затем точным подстрочным резистором типа СП-3 выставить нужное вам напряжение в пределах допустимых интегральной микросхемы-стабилизатора.

Читайте так же:
Kw ple390402a уменьшить ток подсветки

Регулируемый стабилизатор (1,25-37V) на LM317, диоды fr3002

В качестве выпрямительных диодов взял старые FR3002, которые когда-то давно выпаял из древнейшего компьютера 98-го года. При внушительных размерах (корпус DO-201AD) их характеристики (Uобратное: 100 Вольт; Iпрямой: 3 Ампера) не впечатляют, но мне и этого хватает с головой. Для них даже пришлось расширять отверстия в плате, уж больно выводы у них толстые (1,3мм). Если немного изменить плату в лейоте можно впаять сразу готовый диодный мост.

Регулируемый стабилизатор (1,25-37V) на LM317, радиатор

Радиатор для отведения тепла от микросхемы 317 обязателен, даже лучше небольшой вентилятор поставить. Еще, в месте соединения подложки корпуса TO-220 микросхемы с радиатором капните немного термопасты. Степень нагрева будет зависеть от того, сколько мощности рассеивает микросхема, а также от самой нагрузки.

Регулируемый стабилизатор (1,25-37V) на LM317

Микросхему LM317T я не устанавливал прямо на плату, а вывел от неё три провода, с помощью которых и соединил этот компонент с остальными. Это было сделано для того, чтобы ножки не расшатывались и вследствие чего не были переломанными, ведь данная деталь будет прикреплена к рассеивателю тепла.

Регулируемый стабилизатор (1,25-37V) на LM317, подстроечный резистор

Подстрочный резистор для возможности использования полного вольтажа микросхемы, то есть регулировки от 1,25 и аж до 37 Вольт устанавливаем с максимальным сопротивлением 3432 кОма (в магазине самый близкий номинал 3,3кОм.). Рекомендуемый тип резистора R2: подстрочный многооборотный (3296).

Саму микросхему-стабилизатор LM317T и подобные ей выпускает множество, если не все компании по производству электронных компонентов. Покупайте только у проверенных продавцов, потому что встречаются китайские подделки, особенно часто микросхемы LM317HV, которая рассчитана на входное напряжение аж до 57 Вольт. Опознать ненастоящую микросхему можно по железной подложке, в фейке она имеет множество царапин и неприятный серый цвет, также неправильную маркировку. Еще нужно сказать, что микросхема имеет защиту от короткого замыкания, а также перегрева, но на них сильно не рассчитывайте.

Регулируемый стабилизатор (1,25-37V) на LM317

Не забываем, что данный (LM317Т) интегральный стабилизатор способен рассеивать мощность с радиатором только до 20 Ватт. Плюсами этой распространённой микросхемы являются её маленькая цена, ограничение внутреннего тока короткого замыкания, внутренняя тепловая защита

Платку можно нарисовать качественно даже обычным пергаментным маркером, а потом вытравить в растворе медного купороса/хлорного железа…

Регулируемый стабилизатор (1,25-37V) на LM317, готовая плата

Фото готовой платы.

Регулируемый стабилизатор (1,25-37V) на LM317, готовый стабилизаторРегулируемый стабилизатор (1,25-37V) на LM317, готовый стабилизатор

Как вы знаете, существует множество интегральных микросхем-стабилизаторов напряжения в разных корпусах и с различными характеристики входного и выходного напряжения и тока. Внизу я прикрепил удобную таблицу названия самых распространенных и не только микросхем и их краткие характеристики.

Регулируемый стабилизатор (1,25-37V) на LM317, параметры lm317

Типовые и иные схемы включения микросхем серии ИС LM117 / LM217 / LM317

Интегральные стабилизаторы этой серии удобны в использовании во множестве иных применений. Некоторые из его нестандартных применений я вам хочу показать.
В силу того, что данные стабилизаторы имеют «плавающие» относительно «земли» потенциалы выводов, ими могут быть стабилизаторами напряжения в несколько сотен вольт, при условии, что не будет превышен допустимый предел разности напряжений вход-выход.

Кроме того, ИС LM117/LM217/LM317 удобны при создании простых регулируемых импульсных стабилизаторов, стабилизаторов с программируемым выходным напряжением, либо для создания прецизионного стабилизатора тока.
Некоторые схемы их необычных применений показаны на рисунках.

Мощный повторитель напряжения.
________________________________________

R1-определяет выходное сопротивление зарядного устройства Zвых = R1(1+R3/R2). Использование R1 позволит при малой скорости заряда обеспечить максимальный заряд батареи.
________________________________________

Интегральные стабилизаторы данной серии можно с успехом использовать для стабилизации тока. Это очень удобно для изготовления на их основе различных зарядных устройств.
________________________________________

Читайте так же:
Что такое дистанционный выключатель света

На этой схеме изображён интегральный стабилизатор напряжения с плавным запуском. Ёмкость конденсатора С2 задает плавность включения стабилизатора.
________________________________________

Высокая стабильность данного стабилизатора, достигается за счет использования дополнительного интегрального двухвыводного стабилитрона повышенной стабильности.

Интегральные стабилизаторы напряжения LM117/LM317, LM150/IP150, LM138/LM238/LM338
Долгое время у меня служил блок питания, построенный по классической схеме параметрического стабилизатора напряжения с защитой от короткого замыкания [1]. Только в целях получения большего выходного тока транзисторы VT2 и VT3 были заменены на КТ315 и КТ818 соответственно. Полярность выходного напряжения при этом другая, так что все конденсаторы, диоды и стабилитрон (я, кстати, применял КС518 — он выдает 18 вольт) должны быть включены обратной полярностью. Кроме того, вместо VT1 — МП38.
Этот блок питания (БП) являлся универсальным источником энергии для моих домашних экспериментов, выдавая от 0,5 до 18 вольт стабилизированного напряжения при токе 1 — 1,5А. Однако был у него и недостаток — из-за низкого КПД подобных схем выходной мощный транзистор греется как печка.
Долго я хотел сделать этот БП на интегральной базе (там и КПД повыше, да и есть такие функции как защита от перегрева, от короткого замыкания или даже от превышения допустимого тока), только не попадались мне на глаза подобные микросхемы. К142ЕН1, К142ЕН2 [2] — малая мощность, придется ставить дополнительный транзистор на усиление тока, да и слишком много выводов у неё. На КР142ЕН5 можно сделать регулируемый стабилизатор напряжения (СН), однако в этом случае минимальное напряжение будет 5В, что тоже нежелательно.
Таким образом, на отечественной элементной базе построить интегральный СН с желаемыми параметрами невозможно.
Однако зарубежная промышленность (точнее, фирма National Semiconductor) выпускает одну интересную микросхему LM317 (аналог — LM117 той же фирмы — различаются по ряду параметров , в частности, по диапазону рабочих температур, у LM117 он шире (от -55 до +150 °C)).
Так вот, эти микросхемы представляют собой регулируемые СН с выходным напряжением 1,2 — 37В при выходном токе 1,5А. Как уверяют производители, они снабжены защитой от короткого замыкания, выходной ток не зависит от температуры кристалла, гарантируется максимальная нестабильность выходного напряжения 0,3%, подавление пульсаций — на уровне 80 дБ.
К этому стоит добавить малые размеры (микросхема имеет всего три вывода, выпускается в различных корпусах: ТО-220, ТО-3, ТО-39, TO-263, SOT-223, TO-252 (рис. 1)) и низкую стоимость (в магазине я купил LM317 в корпусе ТО-220 за 10 рублей).

Рисунок 1 — Внешний вид корпусов LM117/LM317
Схема регулируемого стабилизатора напряжения показана на рисунке 2.

Рисунок 2 — Схема регулируемого СН (1,25 — 25 В)
Также эти микросхемы применяют как зарядные устройства для аккумуляторных батарей. Типичная схема такого устройства приведена на рисунке 3. Здесь используется принцип зарядки постоянным током.

Рисунок 3 — Схема зарядного усторойства

Как видно из рисунка, ток заряда определяется сопротивлением R1. Значения этого сопротивления лежат в пределах, указанных на рисунке. Это соответствует току заряда от 10 мА до 1,56 A.
Хочу отметить, что если требуется получить больший выходной ток СН, то лучше использовать специальные микросхемы:
— на ток до 3А рассчитана LM150 (IP150);
— на ток до 5А рассчитаны LM138 / LM238 / LM338 (отличаются диапазоном рабочих температур, самый широкий — у LM138 (от -55 до +150 °C).
Схемы включения у этих микросхем такие-же, что и на рисунке 2, цоколевка — как на рисунке 1.
Далее приведены схемы зарядного устройства для автомобильного кислотно-свинцового аккумулятора (рис. 4) и стабилизатора напряжения с максимальным током 10А (рис. 5) как примеры дополнительного применения микросхем LM150 и LM138.

Читайте так же:
Ток утечки контрольного кабеля

Рисунок 4 — Зарядное устройство для автомобильного аккумулятора на LM150(IP150)

Рисунок 5 — СН с выходным током до 10А

В заключение хочу заметить, что выходной конденсатор С2 по схеме на рис.2 может быть емкостью от 1 до 1000 мкФ — в зависимости от целей применения СН. Однако при емкости свыше 10 мкФ и/или выходном напряжении выше 25 В требуется в схему включать защитные диоды (рис. 6). Это нужно для того, чтобы предотвратить импульс тока, который может возникнуть при коротком замыкании в нагрузке из-за разряда выходного конденсатора. Этот импульс тока может достигать величины 20 А и повредить микросхему.

Литература:
1. Shema.Tomsk.Ru — Блок питания с защитой от КЗ;
2. Shema.Tomsk.Ru — Стабилизаторы напряжения на микросхемах серии К142;
3. National Semiconductor — LM117/LM317A/LM317 3-Terminal Adjustable Regulator;
4. LM138/238/LM338 — ADJUSTABLE VOLTAGE REGULATORS THREE-TERMINAL 5-A;
5. LM150/250/LM350 — ADJUSTABLE VOLTAGE REGULATORS THREE-TERMINAL 3 A;
6. LM150K 3.0A Adjustable Positive Voltage Regulator.

Очень многие используют аккумуляторы для питания радиоэлектронной аппаратуры, при этом заряжают их зарядными устройствами сомнительного поисхождения. Ниже приводится описание простого зарядного устройсва обеспечивающего стандартный режим заряда.
Зарядное устройство использует принцип зарядки постоянным токо. В качестве источника тока используется очень хорошая микросхема LM317. Схема включения изображена на рисунке:

Класическое определение источника тока: источник тока — это источник электрической энергии имеющий безконечне внутреннее сопротивление и такое же безконечное напряжение на свобоных зажимах.
Принцип работы примерно такой. LM317 регулируя ток по выводу 3 пытается добится падения напряжения на резисторе R1 равного 1,25V. Следовательно изменяя номинал R1 можно регулировать ток в определенных пределах. Эти приделы ограничены с одной стороны величиной в 0,8 Ом а с другой в 120 Ом(0,8 Поскольку расположение выводов у LM317 не очевидно привожу рисунок самой микросхемы. (вид со стороны маркировки)

Пример
Итак, почти все что надо знать уже изложено, вот конкретный пример использования.
Емкость
mA Ток зарядки
mA Сопротивление
резистора Ом
500 50 24
Так как для нормальной работы необходимо чтобы было хоть какоето падение напряжения на LM317, поэтому напряжение подаваеммое на вход источника тока, должно превосходить наряжение на заряженном аккумуляторе. Например, если это два пальчиковых аккумулятора, то напряжение когда они полностью заряженны приближается к 3 В, и для их зарядки рекомендуется на вход источника тока подавать напряжение не менее 6 В. С другой стороны LM317 не «дубовая» и присутствие более 30 В на входе не желательно.
Питать зарядное устройство наиболее рационально от сети переменного тока 220В через понижающий трансформатор и выпрямитель с простейшим сглаживающим фильтром.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector