Sanitaryhygiene.ru

Санитары Гигиены
30 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ремонт подсветки телевизора Samsung UE40F6650AB UE40F6650 (нет изображения). Доработка блока питания BN44-00622B BL42X1Q_DHS (ограничение тока подсветки)

Ремонт подсветки телевизора Samsung UE40F6650AB UE40F6650 (нет изображения). Доработка блока питания BN44-00622B BL42X1Q_DHS (ограничение тока подсветки).

Новости

Уважаемый читатель – вас приветствует коллектив компании ГИЛЬДИЯ МАСТЕРОВ. В который раз мы заведем разговор про ремонт подсветки. В настоящее время – это одна из наиболее распространенных поломок современных телевизоров. Каждый день телевизионным мастерам нашей компании приходится иметь дело с таким типом неисправностей.

Мы всегда рады проконсультировать вас по вопросам ремонта по телефонам +375 29 604 1000 +375 33 604 1000

Ремонт подсветки телевизора Samsung UE40F6650AB UE40F6650.

Сегодняшний герой нашей статьи – телевизор Samsung UE40F6650AB. Комплектуется качественной матрицей разрешения Full HD. Имеет функцию Smart TV и адаптер беспроводной сети WI – FI. Несмотря на то, что телевизор Samsung UE40F6650AB относится к модельной ряду 2013 года – он вполне подходит для комфортного использования и в настоящее время.

Со слов хозяев – часть экрана телевизора начала тускло показывать и спустя неделю изображение пропало окончательно. Владельцы обратились к интернету, в результате телевизор оказался в наших умелых руках. Провести диагностику не составила большого труда. Подсветив фонариком изображение – мы увидели проступающие силуэта картинки. Замерили напряжение на драйвере подсветки – оно оказалось в норме. Единственный вариант ремонта – разобрать матрицу и заменить сгоревшие компоненты подсветки.

Разбор и состав телевизора

Предельно аккуратно кладем телевизор на стол экраном в низ.

Снимаем заднюю крышку и откладываем в сторону.

Ремонт подсветки телевизора Samsung UE40F6650AB UE40F6650.

Перед нашими глазами виднеются четыре модуля – майн плата, блок питания, T-CON и динамики.

Майн плата BN41-01958A.

Майн плата BN41-01958A – c ремонтом этого блока нам приходится часто сталкиваться. Прошивка/замена микросхемы EMMC, цепи питания и BGA пайка процессора – стандартные болезни майна.

Блок питания BN44-00622B BL42X1Q_DHS

Блок питания BN44-00622B BL42X1Q_DHS – про доработку питания подсветки мы поговорим ниже по тексту.

Плата T-CON LSF400HF02 BN41-01939B

Плата T-CON LSF400HF02 BN41-01939B – иногда сгорает в результате короткого замыкания матрицы.

Матрица CY-GF400CSLV1V.

Ремонт подсветки телевизора Samsung UE40F6650AB UE40F6650.

Отделяем рамку удерживающую матрицу.

Ремонт подсветки телевизора Samsung UE40F6650AB UE40F6650.

Предельно аккуратно извлекаем матрицу. Любой скол превратит экран в мусор.

Ремонт подсветки телевизора Samsung UE40F6650AB UE40F6650.

Отсоединяем пластик удерживающий листы рассеивателей.

Ремонт подсветки телевизора Samsung UE40F6650AB UE40F6650.

Откладываем рассеиватели в сторону. Не забываем – что любое жирное пятно или пылинка будет замечательно видны на светлом фоне экрана ТВ.

Ремонт подсветки телевизора Samsung UE40F6650AB UE40F6650.

Что бы добраться до подсветки, следует убрать лист заднего отражателя.

Ремонт подсветки телевизора Samsung UE40F6650AB UE40F6650.

Для этого снимаем пластиковые защелки удерживающие отражатель.

Ремонт подсветки телевизора Samsung UE40F6650AB UE40F6650.

Снимает лист отражателя.

Ремонт подсветки телевизора Samsung UE40F6650AB UE40F6650.

Откладываем отражатель вместе с пластиковыми заглушками в сторону.

Ремонт подсветки телевизора Samsung UE40F6650AB UE40F6650

Для ремонта подсветки потребовалось заменить две длинных и две коротких планки светодиодной подсветки.

Ремонт подсветки телевизора Samsung UE40F6650AB UE40F6650.

Все замечательно – осталось собрать ТВ и выдать заказчику.

Доработка блока питания BN44-00622B BL42X1Q_DHS (ограничение тока подсветки)

Ограничение тока производится с помощью подстроечного резистора выделенного на рисунке выше.

Заключение

По нашему репортажу может сложится впечатление – что ремонт подсветки простая процедура. Но за кажущейся простотой кроется много моментов, описание которых нельзя уложить в рамки одной статьи. Прежде чем вы решите попытаться самостоятельно произвести ремонт подсветки. Подумайте, что любой скол матрицы превращает телевизор в мусор.

Диагностика и неисправности мультиконтроллера в ноутбуке

В этой статье пойдет речь о микросхеме, которая управляет работой всего ноутбука, в том числе, его включением. Её неисправности приводят к значительным последствиям для пользователя и чаще всего требуют ремонта материнской платы в сервисе.

Задачи мультиконтроллера

Мультиконтроллером, или, по-английски Super I/O (SIO) или Multi I/O (MIO), на сленге «мультик» (еще в документации встречается EC-контроллер), называется микросхема, обеспечивающая мониторинг напряжений и температур, работу с периферийными устройствами. Такими устройствами могут быть клавиатура, мышь, кнопка включения, датчик закрытия крышки и тп. Основным его предназначением является управление клавиатурой (даже в схемах он обозначается как KBC-контроллер), однако со временем производители начали нагружать его множеством дополнительных функций, таких, например, как индикация работы жесткого диска (светодиод на передней панели ноутбука) или управление частотой работы кулера. Именно на эту микросхему «приходят» все контактные дорожки шлейфа клавиатуры ноутбука. На самом деле на ножки мультиконтроллера приходят сигналы практически со всех устройств и микросхем ноутбука. Уровень сигнала может быть постоянный 3.3V (высокий логический уровень), либо изменяющийся в случае обмена данными (измеряется осциллографом).

В запуске ноутбука он вообще играет первостепенную роль, так как именно на него приходит сигнал с кнопки включения, и именно он запускает все источники напряжений и затем отдает сигнал южному мосту для начала инициализации.

Мультиконтроллер управляет включением ШИМ-контроллеров, вырабатывающих необходимые для работы узлов ноутбука напряжения, ключами, коммутирующими эти напряжения. Через мультиконтроллер по протоколу Firmware HUB или SPI подключена микросхема Flash c программным обеспечением (которую иногда приходятся прошивать). В состав мультиконтроллера могут входить контроллеры часов реального времени, жестких дисков, USB, интегрированный аудиоинтерфейс, интерфейс LPC.

Разновидности мультиконтроллеров

Мультиконтроллеры выпускают следующие фирмы: ENE; Winbond; Nuvoton; SMCS; ITE; Ricoh.

Сильно отличаются только последние, хотя бы методом пайки, они BGA.

На современных мультиконтроллерах имеется по 128 ножек, но их назначение сильно отличатся в зависимости от модели мультиконтроллера и даже от его ревизии. К примеру, KB926QF-D2 и KB926QF-C0. — два совершенно разных мультиконтроллера.

Неисправности мультиконтроллеров и их симптомы

Мультиконтроллер часто выходит из строя при залитии ноутбука жидкостью или вследствие выгорания ключей, формирующих 3.3В. Второе случается при скачках питания в сети.

К основным симптомам неисправности мультиконтроллера можно отнести некорректную работу клавиатуры и тачпада и отсутствие запуска как такого. Также, следствием неправильной работы «мультика» являются и глюки периферии — неправильная работа датчиков, кулера. Также по вине SIO может не определяться жесткий диск и другие накопители (работа USB при этом завязана на южный мост).

В диагностике и ремонте ноутбуков мультиконтроллер имеет ключевое значение, поскольку отсутствие на мультиконтроллере важных сигналов, приходящих с микросхем ноутбука, позволяет выявить неисправные микросхемы и произвести их замену. На мультиконтроллер приходит LPC шина, по который идет обмен с южным мостом, и с которой можно считать всем известные POST-коды. Для этого, кстати, в ремонте часто подпаиваются на прямую к ножкам мультиконтроллера тоненькими проводками и выводят коды на индикаторы.

Читайте так же:
Steinel датчик освещенности сумеречный выключатель nightmatic 2000

Также иногда во время самостоятельной замены матрицы ноутбука забывают отключить аккумулятор. Это тоже может привести к выгоранию мультиконтроллера. Но, к счастью, микросхемы эти не очень дорогие и ремонт такой неисправности обходится дешевле, чем, например, замена южного моста или видео. Многие микросхемы взаимозаменяемы, а перепайка их — 15 минут (если не потребуется прошивать флэш память).

Диагностика запуска (или отсутствия старта) ноутбука

Для правильной диагностики старта ноутбука необходимо понимать его последовательность и участие в нем мультиконтроллера.

Последовательность включения ноутбука

При включении ноутбука дежурное напряжение через кнопку подается на мультиконтроллер, который запускает все ШИМ-контроллеры, вырабатывающие все напряжения (их много), и, при нормальном исходе, вырабатывают сигнал PowerGood. По этому сигналу снимается сигнал RESET с процессора и он начинает выполнять программный код, записанный в BIOS с адресом FFFF 0000.

Затем BIOS запускает POST (Power-On Self Test), который выполняет обнаружение и самотестирование системы. Во время самотестирования обнаруживается и инициализируется видеочип, включается подсветка, определяется тип процессора. Из данных BIOS определяется его тактовая частота, множитель, настройки. Затем определяется тип памяти, ее объем, проводится ее тестирование. После этого происходит обнаружение, инициализация и проверка подключенных накопителей – привода, жесткого диска, карт-ридера, флоппи дисковода и др., а после проверка и тестирование дополнительных устройств.

После завершения POST управление передается загрузчику операционной системы на жестком диске, который и загружает ее ядро.

Из описания выше видно, что мультиконтроллер вступает в работу на самой ранней стадии, и без его нормального запуска не сформируются управляющие напряжения. Вот условия, необходимые для того, чтобы мультиконтроллер дал команду на старт:

  1. Основной BIOS и EC-BIOS должны быть рабочие.
  2. Мультиконтроллер запитан, работает его кварц и мульт вычитывает содержимое BIOS
  3. ACIN = 3.3 V
  4. LID_SW# = 3.3V (крышка ноутбука открыта)
  5. EC_RST# = 3.3V (мульт снимает RESET с южного моста)
  6. Южный мост снимает сигналы PM_SLP_S3# и SLP_S5#, то есть, на них устанавливается 3.3V
  7. При нажатии кнопки включения сигнал ON/OFFBTN# падает до нуля и этот же сигнал транслируется в PBTN_OUT#

Для инициализации мультиконтроллера необходима микропрограмма, которая хранится либо в той же микросхеме флеш-памяти, что и прошивка BIOS (UEFI), либо в отдельной микросхеме меньшего объема, либо внутри самого мультиконтроллера. В первых двух случаях восстановить прошивку не представляется сложным. А вот прошить непосредственно мультиконтроллер пока могут не любые программаторы. Да и подключиться к нужным его выводам не всегда просто. Прошиваемые мультиконтроллеры — NPCE288N/388N, KB9010/9012/9016/9022, IT8585/8586/8587/8985/8987.

Лучше всего найти документацию и описание сигналов по мультикам IT, которые используются во многих бюджетных ноутбуках, в том числе ASUS и Dell. Благодаря схемам можно понять и отследить, где находятся выше указанные сигналы. Например, в случае IT8752 и аналогичных (используется, например, в семействе ASUS K40 и K50) для диагностики вас должны интересовать, помимо выше указанных, следующие сигналы на мультике:

  • ALL_SYSTEM_PWRGD (68 мульт)
  • SUS_PWRGD (67 мульт)
  • VRM_PWRGD (1 ISL6262)
    Входящие сигналы указывают на выработку сигнала PowerGood и наличие питания Suspend режима и питания на VRM регуляторе ISL6262. Это значит, мост и процессор запитаны.
  • Сигналы H_CPURST#_XDP и H_PWRGD_XDP разрешают работу процессора.
  • PWR_SW# — сигнал с кнопки включения
  • CPU_VRON — включения питания на CPU
  • PM_RSMRST# — снимает RESET с моста
  • PM_SUSB# — хаб PCH должен выдать сигналы PM_SUSC# и PM_SUSB# идущие на мульт, а мульт в ответ выдать сигналы SUSC_EC# и SUSB_EC#
  • PM_PWROK — сигнал на хаб, что питание в норме
  • PM_CLKRUN# — сигнал на запуск тактирования
  • PM_PWRBTN# — сигнал на включение южного моста
  • VSUS_ON — сигнал включения дежурного питания на силовых ключах
  • EC_CLK_EN (CLK_EN#) — разрешение тактирования на южный мост

Питание на IT85xx мульты поступает следующее: +3VA_EC, +3VPLL, +3VACC, без них микросхема не запустится.

Последовательность диагностики мультиконтроллера

Рассмотрим схему последовательности включения ноутбука:

Процедура включения материнской платы

Процедура включения материнской платы

Для диагностики в целом, вам нужно рассмотреть две ситуации:

1. Питание не появляется, светодиод питания не горит.

ite-microcontrollerИщем неисправность в схеме управления питанием. Проверяем 19 V со входа , приходящие на микросхему зарядки (charger), например, MAX. Проверяем наличие дежурных напряжений +3VSUS и т.п. Через форфмирователи +3 V питание поступает на мультик — проверяем это питание на входе. Проверяем выходные сигналы мультика. В некоторых случаях слетает прошивка микроконтроллера. В этом случае, при наличии входных напряжений, нужные управляющие сигналы с микросхемы контроллера не формируются при нажатии кнопки питания.

2. Питание есть, светодиод питания горит, но ноутбук не включается, экран темный. Индикатор жесткого диска сначала включается и гаснет, затем не горит.

Очевидно, мультик работает, управляющие сигналы формируются, однако, дальнейший запуска не происходит или он обрывается. Чаще всего виноваты в этом микросхемы чипсета, сам процессор или тактирующие генераторы, которые срывают генерацию сигналов. Для быстрой диагностики прогреваем микросхемы чипсета по-очереди. После каждого прогрева пробуем на включение. Если ноутбук включается, то виноват конкретный чип. Очень важна предыстория поломки — например, если до поломки перестали работать USB порты, то скорее всего вышел из строя южный мост. Если были артефакты на встроенном видео, то виноват северный мост.

Если же мы видим, что питающие напряжения присутствие, а сигналы с мультика нет (например, не снимается сигналы RESET), то изучаем все сигналы более подробно.

Вот обобщенный порядок следования сигналов при запуске EC:

<- входящий сигнал
-> исходящий сигнал

<- LDO питание +3VA_EC
<- сигнал с чарджера AC_IN>2в или ACIN_OC#=0в
<- сигнал с ДХ LID_SW#=3в
<- снятие ресета EC_RST#=3в
<-> вычитка прошивки SPI ROM
-> сигнал включения силовых дежурок VSUS_ON=3в
<- сигнал с ШИМ дежурки SUS_PWR_GD=3в
-> снятие ресета с юга PM_RSMRST#=3в (юг узнает, что первичные источники питания ок)
<- сигнал с кнопки PWR_SW# 3в просаживается до 0в
-> сигнал PM_PWRBTN#=0в транслируется в юг
<- PM_SUSB# (SLP_S3), PM_SUSC# (SLP_S5) = 3в с юга, разрешение на включение вторичных источников
-> SUSB_EC#, SUSC_EC# = 3в включение вторичных источников и открытие коммут. мосфетов
<- ALL_SYSTEM_PWRGD=3.3в вторичные источники питания ок
-> CPU_VRON=3в поднятие питания CPU_VCORE процессора
<- VRM_PWRGD=3в с ШИМ проца
-> EC_CLK_EN (CLK_EN#) на юг или на тактовый генератор приходит с мульта или ШИМ проца
-> VRM_PWRGD_CLKEN приходит на юг
-> CLK_PWRGD с юга приходит на тактовый генератор
-> сигнал PWROK на юг
-> юг отдает процу сигнал H_PWRGD (HardWare PWRGD, все питания в порядке, следующий этап инициализации)
-> юг снимает ресет с севера PLT_RST#
-> юг снимает ресет с PCI шины PCI_RST#
-> север снимает ресет с процессора HCPU_RST#

Читайте так же:
Провод с выключателем для торшера

Вот алгоритм проверки популярного мульта KB3926, его можно применить и к аналогам:

  1. Проверить питание мульта 3,3v (9 нога)
  2. Проверить генерацию кварца (123 нога)
  3. Проверить сигнал с кн.вкл. ON/OFF 3,3v/0,5v (32 нога)
  4. Проверить АCCOF 0V (27 нога)
  5. Проверить ACIN 3.1V (127 нога)
  6. Проверить PBTN_OUT 0v/3,3v (117 нога)
  7. Проверить сигнал 0v/3,3v (14 нога)
  8. Проверить RSMRST 0v/3,3v (100 нога)
  9. Проверить PWROK 0v/3,3v (104 нога)
  10. Проверить SYSON 0v/3,3v (95 нога)
  11. Проверить VRON 0v/3,3v (121 нога)
  12. Проверить обмен мульта с югом 3,3v (77,78 нога)
  13. Проверить обмен мульта с югом 0v/3,3v (79,80 нога)
  14. Проверить генерацию PCICLK (12 нога)
  15. Проверить сигнал 0v/3,3v (1,2,3 нога)
  16. Проверить TP_CLK 0v/0,1v (87 нога)
  17. Проверить TP_DATA 0v/5v (88 нога)
  18. Проверить SUSP 0v/3,3v (116 нога)
  19. Проверить VGA_ON 0v/3,3v (108 нога)

Вот дополнительные контрольные значения напряжения:

DPWROK_R — 3,3V
PM_RSMRST#PCH — 3,3V
PM_RSMRST#- 3,3V
SUS_PWRGD — 3,3V
5VSUS_PWRGD — 3,3V
ME_SUSPWRDNACK_R — 3.3V

Как видно из алгоритма, в самом начале EC контроллер должен вычитать прошивку из Flash памяти через SPI интерфейс. Если этого не происходит, то дальше никаких сигналов питания ШИМов не формируется. Часто, в случае серии IT85xx и аналогичных это отдельня 8-контактная микросхема (напримерб SST25VF080B) с питанием по линии +3VA_SPI. Обмен данными происходит по линия SO и SI, тактирование по линии SCK. Поэтому, когда это возможно, флэшку перешивают. В некоторых сервисах имеется специальный программатор от Сергея Вертьянова, который позволяет прошивать почти любые флэшки:

Программатор от Сергея Вертьянова

Программатор от Сергея Вертьянова

Телевизор не включается, индикация есть

Ситуация, когда телевизор невозможно включить с пульта или кнопок на самом устройстве, а индикатор горит, встречается часто. Обычно, в таких случаях говорят: «Телевизор не выходит из дежурного режима». Причин тому может быть несколько, но начинать надо с наиболее очевидных. Заменить батарейки в пульте, вспомнить с какой кнопки телевизор включался ранее и, если это не помогает, вызвать мастера по телевизору или, при должном навыке, начинать самостоятельный ремонт телевизора.

Свечение индикатора с большей или меньшей степенью вероятности говорит о работоспособности блока питания. Однако диагностику этой неисправности, как и большинства других, следует начинать именно с анализа работы этой платы. Проверка напряжений в дежурном режиме, их стабильности при попытках включения в рабочий режим, измерение уровня фильтраций, визуальный осмотр деталей помогает оценить работоспособность и функциональность блока питания. Электролитические конденсаторы, верхняя часть которых имеет характерные вздутия, требуют безусловной замены.

В разделе «Неисправности телевизоров» рассмотрены реальные истории ремонтов телевизоров с подобным проявлением дефекта на примере телевизоров Philips 42PFL7433S/60, SAMSUNG LE40R82B, Philips 20PF5121/58 и других моделей. Характер поведения у телеприемников несколько отличался, но причина была одна. Произошло изменение свойств электронных компонентов, в основном конденсаторов, при котором блок питания не мог обеспечить уверенный запуск, влияя на работу всей системы так, что индикация присутствовала, а телевизор не включался. Если в одном случае неисправность была видна невооруженным глазом, то в другом для ее локализации требовался длительный процесс диагностических мероприятий и измерений.

Не всегда устранение явного дефекта в блоке питания приводит к нормальной работе телевизора в целом. В некоторых случаях нестабильное питание приводит к потере информации в микросхемах памяти Eeprom, SpiFlash. При этом обеспечить включение телевизора и переход его в рабочий режим можно лишь с помощью обновления программного обеспечения (прошивок) на программаторе. Этими устройствами мастерская оснащена в достаточном количестве под разные типы и корпуса микросхем. При ремонте своими руками могут возникнуть трудности с прошивкой без оборудования и базы прошивок на телевизионные модели, а обращение в сервисную организацию в такой ситуации морально и экономически оправдано.

Иногда подобные неприятности встречаются при неисправности в цепях питания на системной плате телевизора. Обычно в этом блоке располагаются несколько вторичных источников, выполненных по схеме DC-DC преобразователей или стабилизаторов напряжения. Непременным условием корректной работы процессора и устройств, с ним связанных, является стабильное напряжение питания в диапазоне напряжений при котором обеспечивается их нормальная функциональность. В случаях, когда эти условия не выполняются, последствия могут быть непредсказуемы, а команда на включение устройства может игнорироваться до обеспечения необходимых параметров питания.

Индикатор меняет цвет на зеленый и снова на красный

Подобное поведение чаще всего говорит о том, что процессор формирует команду на включение устройства и отсылает ее всем исполнителям. Если какой то из блоков телевизора команду не выполняет, например, блок питания не включается в рабочий режим или инвертор не способен запустить подсветку, то процессор, не получив подтверждения о том, что все в порядке, отменяет включение и переводит аппарат снова в режим ожидания. В жк телевизорах Sharp при пяти неудачных попытках включения подсветки, процессор блокирует запуск вовсе, до сброса ошибок через сервисное меню или до замены содержимого памяти Eeprom. Такое поведение будет продолжаться до тех пор, пока не будет устранена причина: заменены дефектные лампы, отремонтирован инвертор, блок питания или другой неисправный компонент телевизионного шасси.

Индикатор меняет цвет на зеленый, но ничего не происходит

Ситуация неоднозначна и может иметь много причин такого поведения. Для того, чтобы убедиться в работоспособности основной платы, измеряются питающие напряжения и исследуются команды на включение питания, подсветки и т.д. Возможно, при переключении телевизора на канал с настроенной программой появится звук, а это уже говорит о том, что причина неисправности скорее всего кроется в инверторе или блоке питания LED подсветкой или в источниках излучения.

программатор

Если светодиод (лампочка) индицирует рабочее состояние, но команды на включение с материнской платы не поступают, система не реагирует на кнопки и пульт, вполне возможны сбои программного обеспечения устройств памяти на основной плате. Случаются ситуации, когда процессор выдает команду на включение блока питания, но не запускает инвертор или выдает команду Dimm, определяющую яркость подсветки, при отсутствии команды On/Off. В этом случае обновление ПО, прошивка помогают вернуть нормальную последовательность логическим процессам, проистекающим на системной плате.

Читайте так же:
Расчет сечения кабеля для 12в постоянного тока

В некоторых случаях видимость того, что при включении ничего не происходит может создать системная плата, блокирующая подачу сигналов на контроллер матрицы или передающая такую информацию, при которой экран остается темным. Может быть неисправен и сам T-con, впрочем как и сама жк матрица. Каждый вариант рассматривается и диагностируется отдельно. Подсветка при этом включается, но имеет слабо выраженный характер ввиду заниженной яркости изображения.

Индикатор (лампочка) постоянно хаотично мигает

Такое состояние устройства говорит лишь о нарушении его работоспособности и не содержит значимой информации о возможных проблемах. Необходимо проводить диагностику всего аппарата, начиная с проверки блока питания и вторичных преобразователей на системной плате. Далее исследуются шины обмена информацией между процессором и микросхемами памяти, подача команд процессором на включение и отработка этих команд периферийными составляющими телевизионного шасси.

Индикатор мигает в определенной последовательности

В телевизионных приемниках некоторых производителей: Sony, Philips, Panasonic — предусмотрена самодиагностика телевизора в момент его включения. В результате опроса по шинам SDA, SCL центральный процессор получает информацию о работоспособности других функциональных устройств: тюнера, звукового процессора, чипов памяти, самой цифровой шины и т.д. В случае обнаружения неисправного узла, команда на включение блокируется, а приемник переходит в режим ожидания с индикацией ошибок. Световые индикаторы начинают мигать в определенной последовательности, свидетельствуя о той или иной ошибке в устройстве.

Такой способ самодиагностики позволяет быстрее выявить неисправный компонент. В сервисных инструкциях на конкретную модель приведены так называемые коды ошибок, в которых каждая комбинация миганий индикаторов соответствует возможным отказам различных узлов телеприемника. Это значительно облегчает жизнь телемастеру при диагностике, направляя его по верному пути. Например, 13 миганий светодиода через паузу в телевизоре Sony на шасси FIX2 свидетельствует о проблемах с подсветкой. Неисправными могут быть инвертор или лампы, вот их мы и будем диагностировать. В качестве примера приведу таблицу с кодами ошибок телевизоров Philips на шасси Q552.1E LA. Первый уровень ошибок (Layer 1) мы видим сразу при возникновении дефекта, второй уровень (Layer 2) можно наблюдать, если перевести приемник в сервисный режим.

коды ошибок телевизора Филипс

Подводя итог, можно сказать, что поведение светового индикатора в телевизоре при возникновении неисправности может дать массу полезной информации для успешной диагностики и локализации дефекта в конкретном блоке, способствуя успешному ремонту телевизора в целом.

Проверка работоспособности шим-контроллера.

Как нам уже известно из первых уроков, любой микроконтроллер умеет хорошо работать с цифровыми сигналами. Он легко справляется с арифметическими операциями над цифровыми данными, принимает и передаёт цифровые сигналы по линиям связи. А что значит «цифровые» в данном случае?

В самом первом уроке мы зажигали и гасили светодиод с помощью Ардуино. Для того, чтобы зажечь светодиод, мы подавали на его анод высокий уровень сигнала. А чтобы погасить — низкий уровень. Получается, для управления мы использовали только два уровня напряжения: высокий и низкий. Светодиод либо будет гореть, либо не будет. Третьего — не дано. Оперируя только двумя состояниями означает, что мы работаем с цифровым сигналом.

Но что делать, если нам нужно зажечь этот самый светодиод только на половину яркости? Или запустить двигатель, на 30% его мощности? Для решения этой задачи используют подход, называемый широтно-импульсной модуляцией сигнала. О том, что такое ШИМ и как это работает, мы узнаем на сегодняшнем уроке.

Широтно-импульсная модуляция — ШИМ

Разберем понятие ШИМ на примере управления скоростью вращения двигателя постоянного тока. Поставим своей целью запустить мотор на 50% от его максимальной скорости. Пусть наш двигатель идеальный и чтобы достичь заданной скорости, нам нужно в единицу времени передавать на мотор в два раза меньше мощности. Как это сделать, не меняя источник питания?

Проведем мысленный эксперимент (а кто-то может и натуральный — ничего сложного). Возьмём мотор постоянного тока с массивным маховиком, закрепленным на валу (таким маховиком может служить колесо). Подадим питание от аккумулятора и мотор начнет набирать обороты. Через какое-то время, мотор достигнет номинальной мощности, а его ротор максимальной скорости вращения. Отключим питание, и мотор постепенно начнет замедляться вплоть до полной остановки.

Следующий опыт. Снова включим мотор, и когда его скорость достигнет половины от максимальной — выключим. Заметив, что скорость падает — снова включим. И так далее. Включая и выключая питание мотора, мы заставим ротор вращаться со скоростью, близкой к половине от максимальной!

Разумеется, в силу человеческой медлительности, мотор будет удерживать заданную скорость с некоторой погрешностью. Другими словами, скорость будет «плавать» вокруг заданного значения. Чтобы минимизировать эти отклонения, нам потребуется увеличить частоту переключений. Тут уже не обойтись без автоматики.

А как заставить мотор вращаться медленнее или быстрее? Количество переданной мотору энергии будет зависеть от отношения времени когда мотор включен — tвкл к времени когда он выключен — tвыкл.

ШИМ диаграмма

Так, для передачи мотору 50% мощности, tвкл будет равно tвыкл. Такой случай как раз изображен на графике. Чтобы мотор вращался еще медленнее, скажем с мощностью 25% от номинальной, придется время включения мотора уменьшить до этих самых 25% от общего периода управления T.

ШИМ диаграмма

Таким образом, имея возможность менять ширину импульсов, мы можем достаточно точно управлять скоростью вращения мотора.

Собственно, рассмотренный способ управления мощностью и называется широтно-импульсной модуляцией сигнала, а сокращённо — ШИМ. Теперь рассмотрим параметры которые характеризуют ШИМ сигнал и которые следует учитывать при написании программ для микроконтроллеров.

Коэффициент заполнения (duty cycle)

Начнем с самого главного параметра — коэффициента заполнения D (он же duty cycle). Этот коэффициент равен отношению периода ШИМ сигнала к ширине импульса:

Пример ШИМ сигнала для разных значений D:

Широтно-импульсная модуляция

Чем больше D, тем больше мощности мы передаем управляемому устройству, например, двигателю. Так, при D = 1 двигатель работает на 100% мощности, при D = 0,5 — наполовину мощности, при D = 0 — двигатель полностью отключен.

Читайте так же:
Сенсорный выключатель света кнопка

Кстати, кроме коэффициента заполнения для характеризации ШИМ применяют и другой параметр — скважность S. Эти два параметра связаны выражением:

Скважность, как и коэффициент заполнения — величина безразмерная. В отличие от D, она может принимать значения от 1 до бесконечности. Но чаще всего, особенно в англоязычных источниках, используют именно D.

Частота ШИМ

Частота ШИМ определяет период импульса — T (см картинку выше). Требования к этой частоте диктуются несколькими факторами, в зависимости от типа управляемого устройства.

В случае управления светодиодами одним из главных факторов становится видимость мерцания. Чем выше частота, тем менее заметно мерцание излучаемого света. Высокая частота также помогает снизить влияние температурных скачков, которые светодиоды не любят. На практике для светодиодов достаточно иметь частоту ШИМ в пределах 100-300 Гц.

С моторами постоянного тока дела обстоят немного иначе. С одной стороны, чем больше частота, тем более плавно и менее шумно работает мотор. С другой — на высоких частотах падает крутящий момент. Нужен баланс. Более подробно о моторах мы поговорим в одной из будущих статей, а пока рекомендуем для большинства DIY задач использовать частоту ШИМ 2кГц.

Плюс, общая проблема для всех случаев управления силовой нагрузкой — потери в цепях силовой коммутации (в транзисторах, и не только), которые увеличиваются с ростом частоты ШИМ. Чем больше частота, тем большее время транзисторы находятся в переходных состояниях, активно выделяя тепло и снижая эффективность системы.

Разрешение ШИМ

Ещё один важный параметр — разрешение ШИМ сигнала. Этот параметр показывает, с какой точностью мы можем менять коэффициент заполнения. Чем больше разрешение, тем плавнее будет меняться мощность на управляемом устройстве.

Например, у платы Ардуино с базовыми настройками, разрешение ШИМ — 256. То есть мы можем изменять сигнал от 0 до 255 — не густо, но для большинства DIY задач хватает.


Проверка на материнской плате

Итак, при включении питания платы, срабатывает защита. В первую очередь, необходимо проверить мультиметром сопротивление плеч стабилизатора.

Для этих целей также может быть использован тестер радиодеталей. Если одно из них показывает короткое замыкание, то есть, измеренное сопротивление составляет меньше 1 Ома, значит, пробит один из ключевых полевых транзисторов.

Выявление пробитого транзистора в случае, если стабилизатор однофазный, не составляет труда – неисправный прибор при проверке мультиметром показывает короткое замыкание. Если схема стабилизатора многофазная, а именно так питается процессор, имеет место параллельное включение транзисторов. В этом случае, определить поврежденный прибор можно двумя путями:

  1. произвести демонтаж транзистора и проверить мультиметром сопротивление между его выводами на предмет пробоя;
  2. не выпаивая транзисторы, замерить и сравнить сопротивление между затвором и истоком в каждой из фаз преобразователя. Поврежденный участок определяется по более низкому значению сопротивления.

Второй способ работает не во всех случаях. Если пробитый элемент определить не удалось, придется все же выпаять транзистор.

Далее производится замена поврежденного транзистора, а также, установка на место всех выпаянных в процессе диагностики радиоэлементов. После этого можно попытаться запустить плату.

Первое включение после ремонта лучше выполнить, сняв процессор и выставив соответствующие перемычки. Если первый запуск был успешным, можно проводить тест с нагрузкой, контролируя температуру мосфетов.

Неисправности ШИМ контроллера могут проявляться так же, как и пробой мосфетов, то есть уходом блока питания в защиту. При этом проверка самих транзисторов на пробой результата не дает.

Кроме этого, следствием нарушения функций ШИМ контроллера может быть отсутствие выходного напряжения или его несоответствие номинальной величине. Для проверки ШИМ контроллера следует вначале изучить его даташит. Наличие высокочастотного напряжения в импульсном режиме, при отсутствии осциллографа, можно определить, используя тестер кварцев на микроконтроллере.

Тестирование ШИМ контроллера

Для тестирования контроллера будем использовать набор ячеек литиевых батарей с номинальным напряжением 80 В, которые применяются для данного электрического велосипеда. Контроллер временно подключен к аккумулятору и мотору, который прикреплен к велосипеду, чтобы приводить в движение заднее колесо. Поворачивая потенциометр по часовой стрелке, двигатель должен начать вращаться постепенно и увеличивать скорость, пропорциональную вращению ручки.

Чтобы проверить регулятор скорости на реальной нагрузке, надо смонтировать все на своем месте. Посмотреть как он держит нагрузку, вес, долгое время работы и воздействие атмосферной влажности (лучше покрыть плату лаком).

Признаки неисправности, их устранение

Перейдем к рассмотрению конкретных признаков неисправностей ШИМ контроллера.

Остановка сразу после запуска

Импульсный модулятор запускается, но сразу останавливается. Возможные причины: разрыв цепи обратной связи; блок питания перегружен по току; неисправны фильтровые конденсаторы на выходе.

Поиск проблемы: осмотр платы, поиск видимых внешних повреждений; измерение мультиметром напряжения питания микросхемы, напряжения на ключах (на затворах и на выходе), на выходных емкостях. В режиме омметра мультиметром надо измерить нагрузку стабилизатора, сравнить с типовым значением для аналогичных схем.

Импульсный модулятор не стартует

Возможные причины: наличие запрещающего сигнала на соответствующем входе. Информацию следует искать в даташите соответствующей микросхемы. Неисправность может быть в цепи питания ШИМ контроллера, возможно внутренне повреждение в самой микросхеме.

Шаги по определению неисправности: наружный осмотр платы, визуальный поиск механических и электрических повреждений. Для проверки мультиметром делают замер напряжений на ножках микросхемы и проверку их соответствия с данными в даташит, в случае необходимости, надо заменить ШИМ контроллер.

Проблемы с напряжением

Выходное напряжение существенно отличается от номинальной величины. Это может происходить по следующим причинам: разрыв или изменение сопротивления в цепи обратной связи; неисправность внутри контроллера.

Назначение выводов:

  • GND
    (Ground) — земля, общий провод;
  • VCC
    (Input Voltage) — напряжение питания;
  • FB
    (Feedback) — вход обратной связи для контроля напряжения;
  • OUT
    (Output) — выход для подключения для подключения к затвору ключевого MOSFET транзистора;
  • SEN
    (Current sense input pin) — датчик тока. Вход для подключения для подключения к стоку ключевого транзистора;
  • RI
    (Internal Oscillator frequency setting pin) — вход для подключения внешнего частотозадающего резистора. Вместо него на некоторых моделях микросхем присутствует вход
    CT
    или
    BNO
    ;
  • CT
    (Internal Oscillator frequency setting pin) — вход для подключения внешнего частотозадающего конденсатора;
  • BNO
    (Brownout Protection Pin) — вход для контроля минимального напряжения питания. Если на этом входе напряжение меньше порога — микросхема отключает подачу импульсов на выход OUT;
Читайте так же:
Подключение выключателя с подсветкой три контакта

При подаче питания на вход VCC

контроллера поступает напряжение через резистор с диодного моста. Микросхема запускает процесс генерации импульсов. Дальнейшая подача питания происходит выпрямлением напряжения с нижней левой обмотки импульсного трансформатора.

Частота генерации микросхемы фиксированная. Она задается величиной резистора на входе RI

или конденсатора на входе
CT
.

Стабилизация напряжения устройства осуществляется за счет сравнения величины тока, протекающего через ключевой MOSFET-транзистор и напряжения обратной связи. Ток оценивается по величине падения напряжения на резисторе в цепи стока транзистора, который подключается к выводу SEN

. Напряжение обратной связи снимается с регулируемого стабилитрона TL431, проходит через оптопару и подается на вывод
FB
микросхемы. От значений напряжений на входах
SEN
и
FB
зависит величина скважности импульсов на выходе
OUT
.

Большинство из рассматриваемых здесь микросхем снабжены несколькими различными системами защиты, предотвращающими выход из строя при непредвиденных ситуациях:

  • OVP
    (Over Voltage Protection) — защита от превышения напряжения питания. При увеличении напряжения питания на входе
    VCC
    выше порогового значения (UOVP микросхема прекращает генерацию ШИМ-импульсов на выходе OUT).
  • UVLO
    (Under Voltage Lockout) — триггер Шмитта, разрешающий работу контроллера при достижении напряжения питания на входе VCC значения UVLO on и запрещающей работу при падении напряжения до значения UVLO off. Значения этих напряжений указаны в заводской документации.
  • OLP
    (Over Load Protection) — защита от перегрузки по току.
  • Некоторые микросхемы имеют вход BNO
    (Brownout Protection Pin) — вход защиты от пониженного напряжения питания и импульсных помех на нем. Если напряжение на этом выводе ниже порогового микросхема прекращает генерацию ШИМ-импульсов на выходе
    OUT
    ).

Существует группа ШИМ-контроллеров, включаемых по упрощенной

схеме. Напряжение обратной связи у них снимается с обмотки импульсного трансформатора, питающей микросхему. При таком включении стабильность выходного напряжения ниже, зато количество деталей блока питания намного меньше.

Таблица маркировки ШИМ-контроллеров в корпусе SOT23-6 (обычная маркировка).

My-chip.info — Дневник начинающего телемастера

Учимся ремонтировать кинескопные, LED и ЖК телевизоры вместе.

Ремонт телевизора Samsung CS-21v10MLR с неисправностью «Не включается»

02.11.2015 Lega95 8 Комментариев

KS1A

Здравствуйте. Сегодня на ремонте телевизор Samsung CS-21v10MLR собранный шасси KS1A который не запускается . При включении слышен звук включения магнитной петли, и на этом все заканчивается.

Samsung CS-21v10MLR

Начал ремонт разборки и чистки телевизора от пыли и трупов мух. Телевизор был настолько загрязнен, что пришлось полностью отсоединить шасси и основательно его вычистить.

Pul

Пропылесосив плату, назад устанавливать шасси не стал, решил начать ремонт без подсоединения к кинескопу.

KS1A_ после чистки

KS1A_ после чистки

Первым делом, отсоединил блок питания от строчной развертки и нагрузил его на лампочку 60Вт. Для этого, выпаял дроссель L804, и на выводы конденсатора C812 припаял лампу.

KS1A нагрузка БП на лампу

KS1A нагрузка БП на лампу

Lampa2

Это сделал для того, чтобы после восстановления блока питания замерять выходное напряжение под нагрузкой и обезопасить строчную развертку от возможного завышенного напряжения или других непредвиденных обстоятельств.

Ремонт источника питания начал с замера напряжения на сетевом электролите C801.

Напряжение на сетевом конденсаторе

Напряжение на сетевом конденсаторе

Напряжение составило 284 вольта, что в пределах нормы. Этот результат означает, что диодный мост и предохранитель находятся в исправном состоянии, а проблема локализируется где-то дальше по схеме.

При ремонте блоков питания, первым делом необходимо обращать внимание на электролитические конденсаторы, так как они часто бывают виновниками отсутствия запуска. В схеме шасси KS1A по цепи питания шим контролера ka5q0765rt используется электролитический конденсатор 33мкф на 50в, который я и решил выпаять и проверить.

С802

С802 33мкф на 50в

С802 завышеное ESR

С802 завышеное ESR

В результате оказалось, что ESR данного конденсатора сильно завышен, и составляет порядка 16ом, что является не допустимым. Заменил я этот конденсатор на другой, номиналом 47мкф 63в. Включив телевизор снова в сеть, запуска так и не последовало.

Исходя из схемы видно, что питается шим контроллер от 3 ноги (VСС), на которую должно поступать напряжение порядка 27в.

схема запитки ka5q0765rt

схема запитки ka5q0765rt

Это напряжение формируется через диод D802, наш уже заменённый конденсатор C802 и стабилитрон на 27в DZ803.

Далее, решил как раз замерять это питание на 3 ноге шим контроллера ka5q0765rt. В результате, напряжение там составило всего 0,7вольта, что ничтожно мало.

Напряжение на 3 ноге ka5q0765rt

Напряжение на 3 ноге ka5q0765rt

Получив такие результаты, решил выпаять стабилитрон DZ803 и проверить его. Это довольно сложное задание, так как стабилитрон находится между ребер радиатора охлаждения, и для того чтоб его выпаять необходим тонкий пинцет. Выпаяв стабилитрон, при его позвонке оказалось, что он показывает порядка 300 ом в обе стороны, что говорит о его пробое.

Neispr_Stab Стабилитрона на 27 вольт у меня не оказалось, решил установить на 32 вольта. Впаять новый стабилитрон оказалось намного сложнее чем выпаять, но в результате все получилось. После этой замены, блок питания запустился.

На 3 ноге микросхемы напряжение составило 32 вольт. Данная микросхема вполне свободно может работать с таким питанием.

ыы

Напряжение на 3 ноге ka5q0765rt

Нагрузочная лампа загорелась в пол накала и напряжение на выходе БП составило 127в, что в пределах нормы.

Good_BP

Впаяв назад дроссель L804, и собрав все обратно, телевизор запустился.

Результат

В итоге имеем такой результат. Причиной поломки телевизора стал конденсатор С802, который стал причиной выхода из строя стабилитрона, после чего микросхема ka5q0765rt перестала запускаться.

Специально для Вас, хотел бы порекомендовать один из лучших видео курсов по ремонту импульсных блоков питания. Лично для себя, я открыл очень много нового, изучив этот курс. Казалось, даже те вещи, о которых я якобы знал все, на самом деле выполняют много дополнительных функций, и это для меня стало настоящим открытием. Для тех, кто хочет полностью разобраться с работой импульсных блоков питания, рекомендую ознакомиться с содержанием данного продукта.

Схему телевизора Samsung CS-21v10MLR на шасси KS1A можно скачать здесь :

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector