Sanitaryhygiene.ru

Санитары Гигиены
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

4. 4. ТОКИ СМЕЩЕНИЯ. ЭЛЕКТРОПРОВОДНОСТЬ ДИЭЛЕКТРИКОВ кратко

4.4. ТОКИ СМЕЩЕНИЯ. ЭЛЕКТРОПРОВОДНОСТЬ ДИЭЛЕКТРИКОВ кратко

Привет, Вы узнаете про 4.4. ТОКИ СМЕЩЕНИЯ. ЭЛЕКТРОПРОВОДНОСТЬ ДИЭЛЕКТРИКОВ, Разберем основные ее виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое 4.4. ТОКИ СМЕЩЕНИЯ. ЭЛЕКТРОПРОВОДНОСТЬ ДИЭЛЕКТРИКОВ , настоятельно рекомендую прочитать все из категории Материаловедения и материалы электронных аппаратов

Основные понятия . Поляризационные процессы смещения любых зарядов в веществе, протекая во времени до момента установления и получения равновесного состояния, обусловливают появление поляризационных токов, или токов смещения, в диэлектриках. Токи смещения упруго связанных зарядов при электронной и ионной поляризациях настолько кратковременны, что их обычно не удается зафиксировать прибором.

При постоянном напряжении токи смещения, меняя свое направление, проходят только в периоды включения и выключения напряжения. При переменном напряжении они имеют место в течение всего времени нахождения материала в электрическом поле.

Наличие в технических диэлектриках небольшого числа свободных зарядов, а также инжекция их из электродов приводят к возникновению небольших токов сквозной электропроводности (или сквозных токов).

Таким образом, полная плотность тока в диэлектрике, называемого током утечки, представляет собой сумму плотностей токов смещения и сквозного:

Плотность тока смещения определяется скоростью изменения вектора электрического смещения (индукции) D:

4.4. ТОКИ СМЕЩЕНИЯ. ЭЛЕКТРОПРОВОДНОСТЬ ДИЭЛЕКТРИКОВ

После завершения процессов поляризации через диэлектрик проходит только сквозной ток.

Проводимость диэлектрика при постоянном напряжении определяется по сквозному току, который сопровождается выделением и нейтрализацией зарядов на электродах . Об этом говорит сайт https://intellect.icu . При переменном напряжении активная проводимость определяется не только сквозным током, но и активными составляющими поляризационных токов.

В большинстве случаев электропроводность диэлектриков ионная, реже – электронная.

Сопротивление диэлектрика, заключенного между двумя электродами, при постоянном напряжении можно вычислить по формуле:

4.4. ТОКИ СМЕЩЕНИЯ. ЭЛЕКТРОПРОВОДНОСТЬ ДИЭЛЕКТРИКОВ

где ∑ Iполяр – суммарный ток, вызванный поляризацией диэлектрика.

У твердых изоляционных материалов различают объемную и поверхностную электропроводности.

Для сравнительной оценки объемной и поверхностной электропроводности разных материалов используют также удельное объемное ρ и удельное поверхностное ρS сопротивления.

Удельное объемное сопротивление ρ численно равно сопротивлению куба с ребром в 1 м, мысленно выделенного из исследуемого материала, если ток проходит через две противоположные грани этого куба; ρ выражают в Ом⋅м; 1 Ом⋅м =100⋅Ом⋅см.

В случае плоского образца материала при однородном поле удельное объемное сопротивление рассчитывают по формуле:

4.4. ТОКИ СМЕЩЕНИЯ. ЭЛЕКТРОПРОВОДНОСТЬ ДИЭЛЕКТРИКОВ

где ρ – объемное сопротивление, Ом; S – площадь электрода, м 2 ; h – толщина образца, м.

Удельное, поверхностное сопротивление ρS численно равно сопротивлению квадрата (любых размеров), мысленно выделенного на поверхности материала, если ток проходит через две противоположные стороны этого квадрата (ρS выражают в омах):

4.4. ТОКИ СМЕЩЕНИЯ. ЭЛЕКТРОПРОВОДНОСТЬ ДИЭЛЕКТРИКОВ

где RS – поверхностное сопротивление образца материала между параллельно поставленными электродами шириной d, отстоящими друг от друга на расстоянии l.

По удельному объемному сопротивлению можно определить удельную объемную проводимость γ = 1/ρ и соответственно удельную поверхностную проводимость γS = l/(ρS).

Полная проводимость твердого диэлектрика, соответствующая его сопротивлению Rдиэл, складывается из объемной и поверхностной проводимостей.

Электропроводность диэлектриков зависит от их агрегатного состояния, а также от влажности и температуры окружающей среды.

При длительной работе под напряжением сквозной ток через твердые или жидкие диэлектрики с течением времени может уменьшаться или увеличиваться. Уменьшение сквозного тока со временем говорит о том, что электропроводность материала была обусловлена ионами посторонних примесей и уменьшалась за счет электрической очистки образца. Увеличение тока со временем свидетельствует об участии в нем зарядов, которые являются структурными элементами самого материала, и о протекающем в диэлектрике необратимом процессе старения под напряжением, способным постепенно привести к разрушению – пробою диэлектрика.

На этом все! Теперь вы знаете все про 4.4. ТОКИ СМЕЩЕНИЯ. ЭЛЕКТРОПРОВОДНОСТЬ ДИЭЛЕКТРИКОВ, Помните, что это теперь будет проще использовать на практике. Надеюсь, что теперь ты понял что такое 4.4. ТОКИ СМЕЩЕНИЯ. ЭЛЕКТРОПРОВОДНОСТЬ ДИЭЛЕКТРИКОВ и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Материаловедения и материалы электронных аппаратов

Читайте так же:
Розетка 12v с вилкой для прицепа

Электропроводность диэлектрика токи в диэлектрике

Для твердых диэлектриков наиболее характерна ионная электропроводность . В кристаллических веществах ионную проводимость можно объяснить, исходя из представлений о внутренних нарушениях структуры или дефектах решетки.

Согласно Я.И.Френкелю под действием тепловых флуктуаций ионы получают иногда энергию, достаточную, чтобы покинуть нормальные положения в решетке и попасть в пространство между нормально закрепленными ионами (межузлия).

При тепловом возбуждении эти межузельные ионы перескакивают из одного межузельного положения в другое, а если к кристаллу приложено поле, то в направлении поля более часто. Через диэлектрик будет протекать электрический ток.

Посмотрите, как происходит процесс электропроводности в кристалле по френкелевскому механизму.

Если при движении по кристаллу ион встречает вакантное место, то он снова закрепляется в узле решетки. Такой процесс приводит к обмену атомов местами, то есть к диффузии .

Коэффициент диффузии D связан с подвижностью соотношением Нернста-Энштейна

где — подвижность, e — заряд, k — постоянная Больцмана, T — температура. Коэффициенты диффузии , вычисленные по этой формуле, при комнатной температуре очень малы, не более 10 — 5 см 2 /с, а подвижность 10 — 4 см/В . с.

В процессе электропроводности играют роль не только собственные ионы решетки, но и ионы примесей, особенно с высокой подвижностью. К таким ионам относятся ионы Na + , K + , H + , роль которых велика уже при комнатной температуре.

К числу примесных ионов с большой подвижностью относятся такие ионы как Cu + , Au + , Ag + . Для таких ионов D = 10 -5 — 10 -7 см 2 /с , = 10 -2 — 10 -4 см 2 /В . с. Возможен и другой механизм электропроводности кристаллов ( по Шоттки ), при котором дефекты образуются в результате удаления равного числа анионов ( — ) и катионов ( + ) из нормальных узлов решетки и помещении их в новые узлы на внешних и внутренних поверхностях кристалла. В этом случае вакансии перемещаются по кристаллу вследствии переноса в незанятый узел ионов из соседних узлов. Посмотрите, как происходит этот процесс.

Для многих ионных кристаллов удельная электропроводность экспоненциально зависит от температуры

= e . n . = o . exp(-W a /kT),

где W a = W/2 + U, а W = W f или W = W s — энергия образования дефектов по Френкелю или по Шоттки в зависимости от типа дефектов, U — энергия активации перемещения ионов, меньшая W .

В координатах ln = f(1/T) эта зависимость представляется в виде прямой линии, либо в виде линии с изломом, если имеются два различных механизма проводимости. В этом случае зависимость от 1/T будет представляться суммой двух экспонент

= 1 . exp(-W a 1 /kT) + 2 . exp(-W a 2 /kT) .

Как видно из рисунка, по наклону прямых ln можно найти W a1 и W a2 например для W a1 имеем:

W a1 =ln 2 — ln 1. 10 3. k .
———————-
(10 3 /T 2 )-(10 3 /T 1 )

Для низкотемпературного участка NaCl по экспериментальным данным W a = 1,7 — 2,2 эВ .

В низкотемпературной области проводимость в основном определяется примесями и кривая в этой области имеет более слабый наклон, в высокотемпературной области — проводимость за счет собственных ионов (Cl — ).

Обычно W a1 /W a2 = 1/2 , a 1 / 2 = 10 -5 . Следует отметить, что W a 2 не чувствительна к наличию примесей.

Что такое проводники, полупроводники и диэлектрики

Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.

Говоря простыми словами – проводник проводит ток.

Проводник

К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.

Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Диэлектрики

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Что такое полупроводник

Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах. Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой. Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.

Полупроводники

Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.

Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.

Зонная теория

Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).

Энергетические уровни

На изображении ниже показаны три вида материалов с их энергетическими уровнями:

Элементы зонной теории

Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия. В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.

У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.

У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.

Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток. Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники. Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.

Курс лекций Барнаул 2001 удк 621. 385 Хмелев В. Н., Обложкина А. Д. Материаловедение и технология конструкционных материалов: Курс лекций

Поляризационные процессы смещения связанных зарядов в веществе до момента установления равновесного состояния протекают во времени, создавая поляризационные ток или токи смещения в диэлектриках.

Токи смещения упругосвязанных зарядов при электронной и ионной поляризациях столь кратковременны, что их обычно не удается зафиксировать прибором. Токи смещения различных видов замедленной поляризации, наблюдаемые у большинства технических диэлектриков, называют абсорбционными токами. При постоянном напряжении абсорбционные токи, меняя направление, протекают только в моменты включения и выключения напряжения. При переменном напряжении они имеют место в течение всего времени нахождения материала в электрическом поле.

Наличие в технических диэлектриках небольшого числа свободных зарядов приводит к возникновению слабых по величине сквозных токов или токов утечки.

Таким образом, полная плотность тока в диэлектрике представляет собой сумму токов утечки и смещения

Плотность тока смещения определяется скоростью изменения вектора индукции D, обусловленного мгновенным (электронное, ионное) и замедленным смещением зарядов

Исследование зависимости тока через диэлектрик от времени позволяет установить, что после завершения процессов поляризации через диэлектрик протекает только сквозной ток.

Поляризационные токи необходимо принимать во внимание при измерениях проводимости диэлектриков ввиду того, что при небольшой выдержке образца диэлектрика под напряжением обычно регистрируется не только сквозной ток, но и сопровождающий его ток абсорбции, вследствие чего может создаться неправильное представление о большой проводимости. Проводимость диэлектрика при постоянном напряжении определяется по сквозному току, сопровождающемуся выделением и нейтрализацией зарядов на электродах. При переменном напряжении активная проводимость определяется не только сквозным током, но и активными составляющими поляризационных токов.

Особенностью электропроводности диэлектриков в большинстве случаев является ее неэлектронный (ионный) характер.

Истинное сопротивление диэлектрика Rиз, определяющее величину сквозного тока, может быть вычислено по следующей формуле:

Rиз=U/(i+Σi n )=U/i ск ,

где U  приложенное напряжение, В;

i  наблюдаемый ток, А;

Σi n  сумма токов, вызванных замедленными видами поляризации;

i ск  сквозной ток.

Поскольку определение поляризационных токов даже замедленных видов поляризации представляет некоторые трудности, сопротивление диэлектрика рассчитывают обычно как частное от деления напряжения на ток, измеренный через одну минуту после включения напряжения, и принимаемый за сквозной ток.

Для твердых электроизоляционных материалов необходимо различать объемную и поверхностную электропроводность.

Для сравнительной оценки различных материалов в отношении их объемной и поверхностной электропроводности пользуются значениями удельного объемного сопротивления ρ и удельного поверхностного сопротивления ρ s.

По удельному объемному сопротивлению может быть определена удельная объемная проводимость, по удельному поверхностному сопротивлению  удельная поверхностная проводимость.

В системе СИ удельное объёмное сопротивление ρ равно сопротивлению куба с ребром в 1 м, мысленно вырезанного из исследуемого материала, если ток проходит сквозь куб от одной его грани к противоположной.

В случае плоского образца материала при однородном поле удельное объемное сопротивление (Ом  м) рассчитывается по формуле

где R  объемное сопротивление образца, Ом;

S  площадь электрода, м 2 ;

h  толщина образца, м.

Удельная объемная проводимость измеряется в Смм -1 .

Удельное поверхностное сопротивление равно сопротивлению квадрата (любых размеров), мысленно выделенного на поверхности материала, если ток проходит через квадрат от одной его стороны к противоположной.

Удельное поверхностное сопротивление (в омах) рассчитывается по формуле

где R s  поверхностное сопротивление образца материала (Ом) между параллельно поставленными электродами шириной d (м), отстоящими друг от друга на расстоянии l (м).

Удельная поверхностная проводимость измеряется в сименсах.

Полная проводимость твердого диэлектрика, соответствующая его сопротивлению R из , складывается из объемной и поверхностной проводимостей.

Электропроводность изоляционных материалов обусловливается состоянием вещества: газообразным, жидким или твердым, а также зависит от влажности и температуры окружающей среды. Некоторое влияние на проводимость диэлектриков оказывает также напряженность поля в образце, при которой проводится измерение.

При длительной работе под напряжением ток через твердые и жидкие диэлектрики с течением времени может уменьшаться или увеличиваться. Уменьшение тока со временем говорит о том, что электропроводность материала была обусловлена ионами посторонних примесей и уменьшалась за счет электрической очистки образца. Увеличение тока со временем говорит об участии в нем зарядов, являющихся структурными элементами самого материала и о протекающем в нем необратимом процессе старения под напряжением, способном постепенно привести к разрушению  пробою диэлектрика.

3.2 Электропроводность газов

Газы при небольших значениях напряженности электрического поля обладают исключительно малой проводимостью. Ток в газах может возникнуть только при наличии в них ионов или свободных электронов. Ионизация нейтральных молекул газа возникает либо под действием внешних факторов, либо вследствие соударений заряженных частиц с молекулами.

Внешними факторами, вызывающими ионизацию газа, являются рентгеновы лучи, ультрафиолетовые лучи, космические лучи, радиоактивное излучение, а также термическое воздействие (сильный нагрев газа). Электропроводность газа, обусловленная действием внешних ионизаторов, называется несамостоятельной .

С другой стороны, особенно в разреженных газах, возможно создание электропроводности за счет ионов, образующихся в результате соударения заряженных частиц с молекулами газа. Ударная ионизация возникает в газе в тех случаях, когда кинетическая энергия заряженных частиц, приобретаемая под действием электрического поля, достигает достаточно больших значений. Электропроводность газа, обусловленная ударной ионизацией, носит название самостоятельной.

В слабых полях ударная ионизация отсутствует и самостоятельной электропроводности не обнаруживается. При ионизации газа, обусловленной внешними факторами, происходит расщепление молекул на положительные и отрицательные ионы. Одновременно часть положительных ионов, соединяясь с отрицательными частицами, образует нейтральные молекулы. Этот процесс, как известно, называется рекомбинацией.

Наличие рекомбинации препятствует безграничному росту числа ионов в газе и объясняет установление определенной концентрации ионов спустя короткое время после начала действия внешнего ионизатора.

Предположим, что ионизированный газ находится между двумя плоскими параллельными электродами, к которым приложено электрическое напряжение. Ионы под влиянием напряжения будут перемещаться, и в цепи возникнет ток. Часть ионов при этом нейтрализуется на электродах, часть  исчезает за счет рекомбинации.

На рисунке 3.1 показан характер зависимости тока от напряжения. Начальный участок кривой до напряжения Uн соответствует области выполнения закона Ома, когда запас положительных и отрицательных ионов достаточный и его можно считать постоянным. Ток пропорционален напряжению на газовом промежутке. По мере возрастания приложенного напряжения ионы уносятся к электродам, не успевая рекомбинировать, и при некотором напряжении все ионы, создаваемые в газовом промежутке, будут разряжаться на электродах. Очевидно, что дальнейшее увеличение напряжения уже не будет вызывать возрастания тока, что соответствует горизонтальному участку кривой.

Рисунок 3.1 — Зависимость тока в газе от напряжения

Ток насыщения достигается для воздуха в нормальных условиях при расстоянии между электродами в 10 мм и напряженности поля около 0,6 В/м. Реальное значение плотности тока насыщения в воздухе весьма мало и составляет примерно 10 -15 А/м 2 . Поэтому воздух можно рассматривать как весьма совершенный диэлектрик до тех пор, пока не создадутся условия для появления ударной ионизации.

При увеличении напряжения ток остается постоянным лишь до тех пор, пока ионизация осуществляется под действием внешних факторов. При возникновении ударной ионизации появляется самостоятельная электропроводность, и ток вновь начинает увеличиваться с возрастанием напряжения.

3.3. Электропроводность жидкостей

Электропроводность жидких диэлектриков тесно связана со строением молекул жидкости. В неполярных жидкостях электропроводность зависит от наличия диссоциированных примесей, в том числе влаги; в полярных жидкостях электропроводность определяется не только примесями, но иногда и диссоциацией молекул самой жидкости. Ток в жидкости может быть обусловлен как передвижением ионов, так и перемещением относительно крупных заряженных коллоидных частиц. Невозможность полного удаления способных к диссоциации примесей из жидкого диэлектрика затрудняет получение электроизоляционных жидкостей с малыми значениями удельной проводимости.

Полярные жидкости всегда имеют повышенную проводимость по сравнению с неполярными, причем возрастание диэлектрической проницаемости приводит к росту проводимости. Сильнополярные жидкости отличаются настолько высокой проводимостью, что рассматриваются уже не как жидкие диэлектрики, а как проводники с ионной электропроводностью.

Очистка жидких диэлектриков от содержащихся в них примесей заметно повышает их удельное сопротивление. При длительном пропускании электрического тока через нейтральный жидкий диэлектрик также можно наблюдать возрастание сопротивления за счет переноса свободных ионов к электродам (электрическая очистка).

Удельная проводимость любой жидкости сильно зависит от температуры. С увеличением температуры возрастает подвижность ионов в связи с уменьшением вязкости, и может увеличиваться степень тепловой диссоциации. Оба эти фактора повышают проводимость.

Математически удельная проводимость электроизоляционной жидкости наиболее точно описывается выражением:

где А и а  постоянные, характеризующие данную жидкость.

В нешироком интервале температур зависимость удельной проводимости жидких диэлектриков от температуры может быть выражена следующей формулой:

где γ o и a  постоянные величины для данной жидкости;

t  температура, °С.

Для того, чтобы показать зависимость удельной проводимости жидкости от ее вязкости, воспользуемся законом Стокса для движения шара в вязкой среде под действием постоянной силы. При этом установившаяся скорость будет

r  радиус шара, м;

η  динамическая вязкость жидкости, Пас.

Сила, действующая на носитель заряда и вызывающая его направленное перемещение, будет

где q  заряд носителя, Кл;

Е  напряженность электрического поля, В/м.

Воспользовавшись общим выражением для удельной проводимости

и подставляя в него выражения (3.6) и (3.7), получим

где n о  концентрация носителей заряда.

Полагая, что n о , q, r не изменяются с температурой, то есть пренебрегая тепловой диссоциацией, из равенства (3.10) получаем, что произведение удельной проницаемости и вязкости при разных температурах для данной жидкости остается постоянным (правило Л.В. Писаржевского и П. И. Вальдена).

Из выражения (3.9) при тех же условиях следует, что проводимость возрастает при уменьшении вязкости. При влиянии температуры на степень диссоциации частиц жидкости произведение γη не остается постоянным и растет с возрастанием температуры. Для полярной жидкости  льняного масла  произведение γη остается почти постоянным при разных температурах; электропроводность трансформаторного масла обусловлена движением ионов примесей, степень диссоциации которых с увеличением температуры растет, а потому произведение γη увеличивается с ростом температуры.

При больших напряженностях электрического поля, порядка от 10 до 100 МВ/м, как показывает опыт, ток в жидкости не подчиняется закону Ома, что объясняется увеличением числа движущихся под влиянием поля ионов.

В таблице 3.1 приведены значения объемного удельного сопротивления и диэлектрической проницаемости некоторых жидкостей при температуре 20°С.

В коллоидных системах наблюдается молионная, или электро-форетическая электропроводность, при которой носителями заряда являются группы молекул  молионы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector