Sanitaryhygiene.ru

Санитары Гигиены
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

ЭЛЕКТРОСТАНЦИИ МАЛОЙ ЭНЕРГЕТИКИ Особенности выполнения АВР в узлах нагрузки

ЭЛЕКТРОСТАНЦИИ МАЛОЙ ЭНЕРГЕТИКИ
Особенности выполнения АВР в узлах нагрузки

Анатолий Беляев,
к.т.н., зам. начальника ИТУ РЗА и АСУ Э
Валерий Широков,
главный специалист отдела РЗА Специализированного управления «Леноргэнергогаз» – филиала ОАО «Оргэнергогаз»,
г. Санкт-Петербург

Обычно с целью обеспечения надежности всю систему электроснабжения объекта делят на две независимые части (подсистемы), каждая из которых питается от своего независимого источника. Подсистемы взаимно резервируются на разных ступенях напряжения с помощью устройств автоматического включения резерва (АВР).

Ответственных потребителей одного назначения также разделяют на две независимые группы, которые подключают к разным подсистемам и снабжают устройствами АВР. Надежность электроснабжения обеспечивается за счет того, что в случае погашения одной из подсистем и отказа или неуспешной работы АВР между подсистемами (КЗ на шинах) напряжение в другой подсистеме сохраняется и технологический процесс не нарушается, так как сработает АВР ответственных электроприемников.

Согласно ПУЭ [1] две секции электростанции можно рассматривать как независимые источники питания двух независимых подсистем электроснабжения объекта, которые могут работать в двух режимах – параллельной или раздельной работы.

РЕЖИМ ПАРАЛЛЕЛЬНОЙ РАБОТЫ ПОДСИСТЕМ

Секционный выключатель на электростанции включен. Каждая секция электростанции получает питание от своих генераторов, а при параллельной работе с энергосистемой – также от одного из вводов от энергосистемы.

Преимущества режима: токи КЗ в сети больше, чем при раздельной работе подсистем, соответственно больше и зона действия, и чувствительность быстродействующих защит. Напряжения в обеих подсистемах синхронны, поэтому оперативные переключения в сети можно выполнять без перерыва в питании.

Недостаток режима: КЗ в одной из подсистем вызывают посадки напряжения и в другой подсистеме.

Устройство АВР на секционном выключателе в этих режимах не требуется, за исключением ремонтного режима, когда генераторы электростанции отключены, а подсистемы получают питание от своих вводов от энергосистемы.

Если на электростанции имеется ввод от энергосистемы, то в ряде случаев целесообразно держать его в резерве и выполнить АВР на выключателе этого ввода. Такая необходимость может возникать при низкой надежности внешнего электроснабжения, например из-за неблагоприятных климатических условий. Известны случаи, когда в северных районах линии 110 кВ отключались несколько десятков раз в месяц: в зимнее время при сильных ветрах из-за схлестывания и обрыва проводов и шлейфов проводов, а в летнее – из-за ударов молнии.

РЕЖИМ РАЗДЕЛЬНОЙ РАБОТЫ ПОДСИСТЕМ

Секционный выключатель на электростанции отключен. Каждая секция электростанции получает питание от своих генераторов, а при параллельной работе с энергосистемой – также от одного или двух вводов от энергосистемы. Возможны решения, когда одна из секций получает питание от энергосистемы, а другая – от генераторов электростанции.

Преимущество режима: КЗ в одной из подсистем не вызывают посадок напряжения в другой подсистеме.

Недостатки режима: меньшие по сравнению с режимом параллельной работы токи КЗ в сети, меньшая чувствительность и зона действия быстродействующих защит. При малой мощности генераторов они могут оказаться нечувствительными, из-за чего затягивается время отключения КЗ (вместо основных быстродействующих защит будут работать максимальные токовые) и увеличивается вероятность выхода генераторов из синхронизма. В сетях с маломощными генераторами могут возникать проблемы с обеспечением селективности действия защит. Из-за несинхронных напряжений в обеих подсистемах оперативные переключения в сети приходится выполнять с перерывом в питании.

В этом режиме устройство АВР на секционном выключателе должно быть введено в работу.

Однако исполнение АВР на электростанции, а также на прилегающей подстанции энергосистемы существенно отличается от обычных АВР на распределительных подстанциях.

АВР НА ПРИЛЕГАЮЩЕЙ ПОДСТАНЦИИ ЭНЕРГОСИСТЕМЫ

Главное отличие АВР в этих электроустановках от АВР на подстанциях распределительных сетей заключается в необходимости контроля встречного напряжения на потерявших питание шинах. Например, на прилегающей подстанции энергосистемы (рис. 1) отключается выключатель Q5 действием дифзащиты трансформатора. Типовая схема АВР немедленно включает секционный выключатель Q7. Если при этом были включены выключатели Q1 и Q4, то возникает опасность несинхронного включения генераторов из-за возможного расхождения угла между векторами напряжений энергосистемы и электростанции за время перерыва в питании секции.

Рис. 1. Схема электростанции и прилегающей подстанции энергосистемы

Структурная схема АВР для прилегающей подстанции энергосистемы приведена на рис. 2.

Рис. 2. Схема электростанции и прилегающей подстанции энергосистемы

Для предотвращения несинхронного включения, в схему АВР перед включением секционного выключателя вводится контроль встречного напряжения на секции (со стороны подключенных генераторов), осуществляемый после некоторой выдержки времени (0,3–0,5 с). Эта выдержка необходима для того, чтобы напряжение, которое в момент трехфазного КЗ снизилось до нуля, успело вырасти до значения, при котором реле контроля встречного напряжения запретит АВР (учитывается инерционность действия регуляторов возбуждения генераторов).

Читайте так же:
Схема проходного выключателя с одноклавишными выключателем

При наличии контроля встречного напряжения (ожидания снижения напряжения) приходится применять специальный орган однократности действия АВР, поскольку типовая схема однократности может вывести АВР из действия раньше, чем реле контроля встречного напряжения разрешит включение выключателя резервного питания.

АВР НА ЭЛЕКТРОСТАНЦИИ

Ситуация, аналогичная описанной выше, возникает и на самой электростанции, когда выключатель Q1 отключился от защит при КЗ на линии связи с энергосистемой и АВР включает секционный выключатель.

Структурная схема АВР для применения на электростанции приведена на рис. 3.

Рис. 3. Структурная схема АВР на электростанции: а) поясняющая схема, б) блок-схема АВР.

Устройство АВР выполнено универсальным, оно может быть введено в работу при остановленных генераторах (питание только от энергосистемы), при работающих генераторах на обеих секциях, или в случае, когда одна из секций получает питание от энергосистемы, а другая – от генераторов, или когда генераторы одной или двух секций работают параллельно с энергосистемой.

В схеме АВР использованы, кроме вспомогательных контактов выключателей Q1 и Q2, вспомогательные контакты выключателей генераторов G1(3) и G2(4). Контроль отсутствия встречного напряжения в этой схеме позволяет предотвратить несинхронное включение в случае отказов разветвленных вторичных цепей или при ошибочных действиях обслуживающего персонала.

Для предотвращения неполнофазного режима работы при обрыве одной из фаз питающей линии электропередачи введен пуск АВР по напряжению обратной последовательности U 2. Для предотвращения ложного пуска АВР при перегорании предохранителя со стороны ВН одной из фаз ТН, пуск осуществляется от двух органов напряжения обратной последовательности, один из которых контролирует наличие U 2 на шинах секции, а другой – до вводного выключателя секции (рис. 3). При этом контролируется также наличие нормального напряжения и отсутствие напряжения U 2 на смежной секции (резервном источнике питания).

МНОГОСТОРОННЕЕ АВР

В настоящее время получает распространение многосторонний АВР, который обеспечивает резервирование при любых режимах работы подсистем и внешних вводов от энергосистемы. Решение о том, в каких режимах работать, принимает оперативный персонал, исходя из текущих местных условий, которые могут существенно изменяться в зависимости от состояния и надежности оборудования, погодных условий, времени года, при выводе в ремонт оборудования и т.д.

Переключатель АВР имеет 5 положений: «Отключено», АВР СВ; АВР В1; АВР В2; АВР В1, 2.

«Отключено»: АВР отключен. Этот режим используется при параллельной работе подсистем, когда секционный выключатель включен и секции получают питание от генераторов или от энергосистемы и генераторов, работающих параллельно.

АВР СВ : АВР действует на включение секционного выключателя (рис. 4 а–г). Этот режим используется при раздельной работе подсистем, когда секционный выключатель отключен и каждая из секций получает питание от генераторов или от энергосистемы, или от того и другого параллельно.
Положения В1, В2, В1,2 используются при автономной работе электростанции, когда один или два ввода от энергосистемы находятся в резерве.

Рис. 4. Поясняющие схемы к многостороннему АВР

АВР В1: АВР действует на включение ввода 1. Если секционный выключатель был включен, то АВР восстанавливает питание всего распредустройства, а если отключен – то только первой секции (рис. 4д).

АВР В2: АВР действует на включение ввода 2. Если секционный выключатель был включен, то АВР восстанавливает питание всего распредустройства, а если отключен – то только второй секции (рис. 4е).

АВР В1, 2: оба ввода от энергосистемы отключены и находятся в состоянии дежурства. Если шины потеряли питание, а секционный выключатель был включен, то АВР действует на включение того ввода, на котором имеется напряжение (при наличии напряжения на двух вводах они включаются с отключением секционного выключателя). Если секционный выключатель был отключен, то АВР действует на включение вводного выключателя потерявшей питание секции (рис. 4ж, з).

Логика такого АВР отработана на физических моделях защиты и автоматики подстанций и электростанций (фото 1), реализована в терминалах серий SEPAM 80 и БМРЗ ввода, трансформатора напряжения, секционного выключателя, генераторов и внедрена на ряде действующих объектов. Эти терминалы адаптированы для применения на электростанциях малой энергетики. Разумеется, в них учтены и другие особенности, характерные для подобных объектов [2]. Например, предусмотрена автоматика быстрой разгрузки генераторов, дифференциальная защита шин, делительная автоматика, АЛАР, АЧР и др. Намечено проведение аналогичных работ и для терминалов серий ТОР и «Сириус».

Читайте так же:
Собственное время включения выключателя это

Фото 1. Фрагмент испытательного стенда по отработке алгоритмического обеспечения и файлов конфигурации терминалов РЗА

Напряжение срабатывания реле минимального напряжения пускового органа АВР принимают из условия:

где U Н – номинальное напряжение шин, В;
n Н – коэффициент трансформации трансформатора напряжения.

Напряжение срабатывания реле контроля напряжения на смежной секции принимают из условия:

Время срабатывания пускового органа АВР по напряжению принимается, во-первых, на ступень селективности больше времени действия тех защит, КЗ в зоне действия которых вызывает срабатывание пусковых реле напряжения АВР, и во-вторых, на ступень больше времени АПВ питающих линий и АВР источников питания.

Заметим, что иногда пусковой орган АВР по напряжению ошибочно называют защитой минимального напряжения. Но, как видно из изложенного выше, эти два устройства существенно отличаются друг от друга по назначению, схеме выполнения и уставкам срабатывания. Поэтому называть пусковой орган АВР по напряжению защитой минимального напряжения нельзя.

Уставка срабатывания пускового органа АВР по напряжению обратной последовательности U 2 и контроля отсутствия U 2 на резервном источнике принимается 8–12 В (фазных вторичных) из условия несрабатывания из-за гармонических составляющих в кривой напряжения, особенно второй и пятой. При применении цифровых терминалов необходимо проверить, в каких единицах вводится эта уставка. В ряде случаев она вводится в линейных первичных величинах, тогда ее следует умножить на коэффициент трансформации ТН и . Время срабатывания пускового органа АВР по U 2 принимается по условию отстройки от аварийных режимов, ликвидируемых устройствами РЗА, особенно в питающей сети 110–220 кВ. Обычно оно находится в диапазоне от 5 до 9 с.

Для разгрузки потерявшей питание секции перед АВР и предотвращения опасного наброса нагрузки на работающие генераторы «здоровой» секции должны применяться устройства защиты минимального напряжения первой ступени и автоматика быстрой разгрузки с действием на отключение неответственных (а иногда и части ответственных) электроприемников как на стороне 10 кВ, так и на стороне 0,4 кВ [3].

ВЫВОДЫ

  1. Выполнение устройств АВР на электростанциях малой энергетики и прилегающих подстанциях энергосистем существенно отличается от типовых решений, принятых на подстанциях электрических сетей.
  2. Предложены, проверены на физических моделях и реализованы на объектах специализированные алгоритмы АВР, учитывающие особенности режимов, возникающих при применении малых электростанций.

ЛИТЕРАТУРА

  1. Правила устройства электроустановок. 6-е изд., перераб. и доп., с изм. М.: Главгосэнергонадзор РФ, 1998.
  2. Беляев А.В., Юрганов А.А. Защита, автоматика и управление на электростанциях малой энергетики. Части 1, 2, 3. М.: НТФ «Энергопрогресс», 2010. (Библиотечка электроэнергетика. Приложение к журналу «Энергетик». Вып. 6(138), 7(139), 8(140).
  3. Арцишевский Я.Л., Земцов А.А. Принципы противоаварийного управления в системах электроснабжения с собственным источником // Электрические станции. 2010. № 10.

© ЗАО «Новости Электротехники»
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

1, 3—Вводные выключатели секций шин гпп; 2—секционный выключатель; 5—10—фидерные выключатели электроприемников поверхности; 11—26—выключатели

Автоматизация тяговых преобразовательных подстанций обеспечивает выполнение следующих операций:

дистанционное управление, предусматривающее автоматический режим работы, осуществляемое со щита дистанционного управления, установленного у диспетчера шахты или диспетчера внутришахтного транспорта;

дистанционная и местная сигнализация и контроль режима работы агрегата;

автоматическая защита блока выпрямителей от коротких замыканий, перегрева и коммутационных перенапряжений.

На рис. 17.13 показана схема автоматизации центральной подземной подстанции, имеющей две секции шин.

От выключателей 4 и 11 напряжение 6 кВ по двум вводам подается к вводным выключателям 12 и 21 центральной подземной подстанции. От группового выключателя 13 отходящего присоединения получает питание высоковольтный распределительный пункт РПП-6 кВ, от которого получают питание одиночные КРУ. В нормальном режиме работы секционный выклю-чатель 17 отключен. Он снабжен устройством однократного АВР и блокировкой против включения секции, отключенной защитой при коротком замыкании на шинах этой секции. Подобной блокировкой снабжены все КРУ. Остальные выключатели, за исключением 16 и 18, питающих электродвигатели главного водоотлива, снабжены устройствами АПВ. Выключателями 16 и 18 управляют устройства автоматизации водоотливных установок. Все КРУ отходящих присоединений снабжены БРУ.

При исчезновении напряжения на одном из вводов (например, 21), защитой минимального напряжения отключаются выключатели 18 — 21. От отключенного выключателя 21 подается команда на действие устройства АВР секционного выключателя 17, имеющего регулируемую выдержку времени 0—20 с. При появлении напряжения на отключенном вводе по истечении установленной выдержки времени устройство АПВ включит выключатель 21, при этом включение секционного выключателя 17 устройством АВР не произойдет.

Читайте так же:
Расстояние установки выключателей от дверных проемов

Если по истечении выдержки времени на отключенный ввод не будет подано напряжение, включится секционный выключатель 17 и с помощью устройств АПВ включатся выключатели 19 и 20, восстановив питание электроприемников отключившейся секции. При появлении напряжения на вводе 21 секционный выключатель 17 отключается и подстанция автоматиче­ски переходит в нормальный режим работы.

При коротких замыканиях на шинах ЦПП или в отходящих присоединениях подача напряжения на аварийно отключенные участки исключается. Например, при возникновении к. з. в точке К1 выключатели 20 и 21 отключаются защитой от токов к. з., а выключатели 18 и 19 соответственно защитой минимального напряжения. После отключения секции происходит АПВ вводного выключателя 21 и неселективно отключившегося выключателя 19. Выключатель 20 блокируется специаль-ным устройством, воспринимающим сигнал защиты от токов к. з., а при недопустимом снижении сопротивления изоляции блокируется также и БРУ.

В режиме к. з. в точке К2 отключаются выключатели 1216 и 22 — 26, затем автоматически включается вводной выключатель 12 и после предварительного контроля изоляции БРУ включаются все выключатели отходящих присоединений, за исключением выключателя 26, о блокировке которого сигнализирует лампа «Авария».

Автоматика КРУ действует аналогично при неселективных отключениях, вызванных, например, срабатыванием защит от замыканий (утечек) на землю.

ШИНОСОЕДИНИТЕЛЬНОМ И СЕКЦИОННОМ ВЫКЛЮЧАТЕЛЯХ

3.2.119. Для сборных шин 110 кB и выше электростанций и подстанций отдельные устройства релейной защиты должны быть предусмотрены:

1) для двух систем шин (двойная система шин, полуторная схема и др.) и одиночной секционированной системы шин;

2) для одиночной несекционированной системы шин, если отключение повреждений на шинах действием защит присоединенных элементов недопустимо по условиям, которые аналогичны приведенным в 3.2.108, или если на линиях, питающих рассматриваемые шины, имеются ответвления.

3.2.120. Для сборных шин 35 кB электростанций и подстанций отдельные устройства релейной защиты должны быть предусмотрены:

по условиям, приведенным в 3.2.108;

для двух систем или секций шин, если при использовании для их разделения защиты, установленной на шиносоединительном (секционном) выключателе, или защит, установленных на элементах, которые питают данные шины, не удовлетворяются требования надежности питания потребителей (с учетом возможностей, обеспечиваемых устройствами АПВ и АВР).

3.2.121. В качестве защиты сборных шин электростанций и подстанций 35 кB и выше следует предусматривать, как правило, дифференциальную токовую защиту без выдержки времени, охватывающую все элементы, которые присоединены к системе или секции шин. Защита должна осуществляться с применением специальных реле тока, отстроенных от переходных и установившихся токов небаланса (например, реле, включенных через насыщающиеся трансформаторы тока, реле с торможением).

При присоединении трансформатора (автотрансформатора) 330 кВ и выше более чем через один выключатель рекомендуется предусматривать дифференциальную токовую защиту ошиновки.

3.2.122. Для двойной системы шин электростанций и подстанций 35 кВ и выше с одним выключателем на присоединенный элемент дифференциальная защита должна быть предусмотрена в исполнении для фиксированного распределения элементов.

В защите шин 110 кВ и выше следует предусматривать возможность изменения фиксации при переводе присоединения с одной системы шин на другую на рядах зажимов.

3.2.123. Дифференциальная защита, указанная в 3.2.121 и 3.2.122, должна быть выполнена с устройством контроля исправности вторичных цепей задействованных трансформаторов тока, действующим с выдержкой времени на вывод защиты из работы и на сигнал.

3.2.124. Для секционированных шин 6-10 кВ электростанций должна быть предусмотрена двухступенчатая неполная дифференциальная защита, первая ступень которой выполнена в виде токовой отсечки по току и напряжению или дистанционной защиты, а вторая — в виде

максимальной токовой защиты. Защита должна действовать на отключение питающих

элементов и трансформатора собственных нужд.

Если при указанном выполнении второй ступени защиты не обеспечивается требуемая чувствительность при КЗ в конце питаемых реактированных линий (нагрузка на шинах генераторного напряжения большая, выключатели питаемых линий установлены за реакторами), следует выполнять ее в виде отдельных комплектов максимальных токовых защит с пуском или без пуска напряжения, устанавливаемых в цепях реакторов; действие этих комплектов на отключение питающих элементов должно контролироваться дополнительным устройством, срабатывающим при возникновении КЗ. При этом на секционном выключателе должна быть предусмотрена защита (предназначенная для ликвидации повреждений между реактором и выключателем), вводимая в действие при отключении этого выключателя. При выделении части питающих элементов на резервную систему шин должна быть предусмотрена неполная дифференциальная защита шин в исполнении для фиксированного распределения элементов.

Читайте так же:
Рамки для выключателей livolo

Если возможны частые режимы работы с разделением питающих элементов на разные системы шин, допускается предусматривать отдельные дистанционные защиты, устанавливаемые на всех питающих элементах, кроме генераторов.

3.2.125. Для секционированных шин 6-10 кВ электростанций с генераторами мощностью 12 МВт и менее допускается не предусматривать специальную защиту; при этом ликвидация КЗ на шинах должна осуществляться действием максимальных токовых защит генераторов.

3.2.126. Специальные устройства релейной защиты для одиночной секционированной и двойной систем шин 6-10 кВ понижающих подстанций, как правило, не следует предусматривать, а ликвидация КЗ на шинах должна осуществляться действием защит трансформаторов от внешних КЗ и защит, установленных на секционном или шиносоединительном выключателе. В целях повышения чувствительности и ускорения действия защиты шин мощных подстанций допускается применять защиту, включенную на сумму токов питающих элементов. При наличии реакторов на линиях, отходящих от шин подстанций, допускается защиту шин выполнять по аналогии с защитой шин электростанций.

3.2.127. При наличии трансформаторов тока, встроенных в выключатели, для дифференциальной защиты шин и для защит присоединений, отходящих от этих шин, должны быть использованы трансформаторы тока, размещенные с разных сторон выключателя, чтобы повреждения в выключателе входили в зоны действия этих защит.

Если выключатели не имеют встроенных трансформаторов тока, то в целях экономии следует предусматривать выносные трансформаторы тока только с одной стороны выключателя и устанавливать их по возможности так, чтобы выключатели входили в зону действия дифференциальной защиты шин. При этом в защите двойной системы шин с фиксированным распределением элементов должно быть предусмотрено использование двух сердечников трансформаторов тока в цепи шиносоединительного выключателя.

При применении дельных дистанционных защит в качестве защиты шин трансформаторы тока этих защит в цепи секционного выключателя должны быть установлены между

секцией шин и реактором.

3.2.128. Защиту шин следует выполнять так, чтобы при опробовании поврежденной системы или секции шин обеспечивалось селективное отключение системы (секции) без выдержки времени.

3.2.129. На обходном выключателе 110 кВ и выше при наличии шиносоединительного (секционного) выключателя должны быть предусмотрены защиты (используемые при проверке и ремонте защиты, выключателя и трансформаторов тока любого из элементов, присоединенных к шинам):

трехступенчатая дистанционная защита и токовая отсечка от многофазных КЗ;

четырехступенчатая токовая направленная защита нулевой последовательности от замыкания на землю.

При этом на шиносоединительном (секционном) выключателе должны быть предусмотрены защиты (используемые для разделения систем или секций шин при отсутствии УРОВ или выведении его или защиты шин из действия, а также для повышения эффективности дальнего резервирования):

двухступенчатая токовая защита от многофазных КЗ;

трехступенчатая токовая защита нулевой последовательности от замыканий на землю.

Допускается установка более сложных защит на шиносоединительном (секционном) выключателе, если это требуется для повышения эффективности дальнего резервирования.

На шиносоединительном (секционном) выключателе 110 кВ и выше, предназначенном и для выполнения функции обходного выключателя, должны быть предуслютрены те же защиты, что на обходном и шиносоединительном (секционном) выключателях при их раздельном исполнении.

Рекомендуется предусматривать перевод основных быстродействующих защит линий 110 кВ и выше на обходной выключатель.

На шиносоединительном (секционном) выключателе 3 — 35 кВ должна быть предусмотрена двухступенчатая токовая защита от многофазных КЗ.

3.2.130. Отдельную панель защиты, предназначенную специально для использования вместо выводимой на проверку защиты линии, следует предусматривать при схемах электрических соединений, в которых отсутствует обходной выключатель (например, четырехугольник, полуторная схема и т. п.); такую отдельную панель защиты следует предусматривать для линий 220 кВ, не имеющих отдельной основной защиты; для линий 330 — 500 кB.

Допускается предусматривать отдельную панель защиты для линий 110 кВ, не имеющих отдельной основной защиты, при схемах электрических соединений "мостик" с выключателями в цепях линий и "многоугольник", если при проверке защиты линии ликвидировать повреждения на ней в соответствии с предъявляемыми требованиями более простыми средствами технически невозможно.

Виды дизайнерских выключателей

Развитие сферы электроустановочных изделий не останавливается, появляются новые устройства и модифицируются старые, вернее сказать не старые, а для классической проводки. Для того, чтобы нашим покупателям было легче ориентироваться в этом практически безграничном пространстве и написана эта статья.

Читайте так же:
Щитки под автоматические выключатели ip40

В любом случае, когда вы выбираете выключатель не просто, чтоб он включал-выключал свет, а обращаете внимание на его дизайн, функционал, то всегда лучше обращаться к профессиональным продавцам (лучше к нам, конечно, тем более, что мы не только расскажем, но и покажем наглядно всё разнообразие выключателей от ретро, до умных)

Выключатели для классической проводки

Это самые привычные выключатели, которые работают по очень простому принципу – при включении замыкается фаза, а при выключении она размыкается.

Такие выключатели позволяют организовать управление светом с одной точки или нескольких мест.

Когда мы говорим выключатель – мы подразумеваем всё семейство устройств от выключателя до звонковой кнопки. Это не очень корректно, но привычно.

Классификация выключателей по функционалу

  • Выключатель

Обычный выключатель для управления световой группой с одной точки

  • Переключатель

Специальный выключатель для организации управления светом с двух мест

  • Перекрестный переключатель

Специальный переключатель, который используется в связке с переключателм для организации управления группой с трех и более мест

  • Выключатель звонкового типа с нормально разомкнутым контактом

Специальный выключатель, при нажатии на который контакт замыкается, но как только мы перестаем давить на клавишу – контакт размыкается (Такие выключатели используются в сценарных проводных системах управления освещением)

  • Выключатель звонкового типа с нормально замкнутым контактом

Также специальный выключатель, при нажатию на клавишу которого контакт размыкается, а когда давление снимается – вновь замыкается (Такой выключатель используется в сценарных беспроводных системах управления светом)

Схемы подключения выключателей и переключателей для управления группой света из нескольких мест

Это самый привычный функционал, который используется повсеместно в проводке классического типа.

Классификация выключателей по дизайну

Выключатель традиционный

Другие названия – балансирный, рокер, коромысло, качелька.

Выключатель всем привычного вида. При включении и выключении клавиша меняет угол наклона, что делает понятным замкнут контакт или нет (это важно, если свет по каким-то причинам не включается при нажатии на клавишу)

Выключатель самовозвратный

Такой механизм был придуман для перфекционистов, которым не нравится, что клавиши у обычных выключателях в блоке могут находятся под разными углами. У данного типа выключателей клавиша всегда располагается параллельно стене (декоративной накладке)

При нажатии на нижнюю часть клавиши она замыкает контакт и возвращается на место. Такой выключатель внешне не отличим от кнопочного (звонковой кнопки).

Выключатель аксиальный

Аксиальный или осевой выключатель — дизайнерский выключатель, клавиша у которого всегда располагается параллельно декоративной накладке. В отличие от самовозвратного, нажимать нужно на центральную часть клавиши, а не на край.

Этот вариант скорее больше относится к перфекционистскому, чем самовозвратные, так как здесь клавиша всегда располагается идеально ровно — до, во время и после нажатия.

Выключатель роторный

Роторные выключатели чаще всего используются в ретро дизайне как для скрытой проводки так и для наружной,

Хотя есть некоторые модели, которые выглядят вполне современно, у фабрики Fontini, например, есть коллекция DO.

У роторных выключателей есть интересная особенность — внешний вид выключателя, переключателя, выключателя на два направления и звонковой кнопки на два направления абсолютно одинаковый!

Выключатель рычажковый

Рычажковые выключатели чаще всего используются в классических коллекциях. Рычажки, зачастую украшаются разноцветными кристаллами, Swarovski, например – так сделали Fontini в своей коллекции 1950. С другой стороны такой способ включения находит применения и в более современных сериях – Font Barcelona 5.1 гармонично решила эту задачу сочетания традиций и современности, за что и получила премию reddot 2013

Выключатель кнопочный (звонковая кнопка)

Внешний вид такого выключателя неотличим от традиционных, аксиальных, рычажковых, роторных.

При нажатии на центральную часть (в случае с осевыми) или на нижнюю часть (в случае с боковыми) происходит замыкание контакта, а при снятии давления контакт размыкается, а клавиша возвращается на место.

Интерес представляет коллекция Fontini DO, в которой появились кнопочные выключатели в роторной серии, причем, как на одну, так и на две группы. Дизайн роторный, а функционал — кнопочный — это очень полезно для систем управления светом.

Fontini DO кнопочный поворотный выключатель на одну группуFontini Do кнопочный поворотный выключатель на две группы

Сенсорные выключатели

Сенсорные выключатели — управляют светильниками (и не только) с помощью лёгкого касания сенсорной панели.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector